Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A stepwise 2′-hydroxyl activation mechanism for the bacterial transcription termination factor Rho helicase

Abstract

The bacterial Rho factor is a ring-shaped ATP-dependent helicase that tracks along RNA transcripts and disrupts RNA-DNA duplexes and transcription complexes in its path. Using combinatorial nucleotide analog interference mapping (NAIM), we explore the topology and dynamics of functional Rho–RNA complexes and reveal the RNA-dependent stepping mechanism of Rho helicase. Periodic Gaussian distributions of NAIM signals show that Rho forms uneven productive interactions with the track nucleotides and disrupts RNA-DNA duplexes in a succession of large (7-nucleotide-long) discrete steps triggered by 2′-hydroxyl activation events. This periodic 2′-OH–dependent activation does not depend on the RNA-DNA pairing energy but is finely tuned by sequence-dependent interactions with the RNA track. These features explain the strict RNA specificity and contextual efficiency of the enzyme and provide a new paradigm for conditional tracking by a helicase ring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NAIM of Rho-RNA interactions.
Figure 2: Summary of interference effects in RanchorRtrack34D34.
Figure 3: Extended periodicity of 2′-deoxy effects in the tracking strand of a longer RNA-DNA substrate (HybA).
Figure 4: Stepwise 2′-OH–dependent control of forward Rho motion.
Figure 5: Effect of single point SBS mutations on Rho-directed unwinding of HybA.
Figure 6: Possible models accounting for a standard 7-nt-long step size between 2′-OH–dependent activation events.

Similar content being viewed by others

References

  1. Pyle, A.M. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu. Rev. Biophys. 37, 317–336 (2008).

    Article  CAS  Google Scholar 

  2. Patel, S.S. & Picha, K.M. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697 (2000).

    Article  CAS  Google Scholar 

  3. Delagoutte, E. & von Hippel, P.H. Helicase mechanisms and the coupling of helicases within macromolecular machines. Part II: integration of helicases into cellular processes. Q. Rev. Biophys. 36, 1–69 (2003).

    Article  CAS  Google Scholar 

  4. Singleton, M.R., Dillingham, M.S. & Wigley, D.B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007).

    Article  CAS  Google Scholar 

  5. Enemark, E.J. & Joshua-Tor, L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442, 270–275 (2006).

    Article  CAS  Google Scholar 

  6. Johnson, D.S., Bai, L., Smith, B.Y., Patel, S.S. & Wang, M.D. Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell 129, 1299–1309 (2007).

    Article  CAS  Google Scholar 

  7. Galletto, R., Jezewska, M.J. & Bujalowski, W. Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: quantitative analysis of the rate of the dsDNA unwinding, processivity and kinetic step-size of the Escherichia coli DnaB helicase using rapid quench-flow method. J. Mol. Biol. 343, 83–99 (2004).

    Article  CAS  Google Scholar 

  8. Lionnet, T., Spiering, M.M., Benkovic, S.J., Bensimon, D. & Croquette, V. Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism. Proc. Natl. Acad. Sci. USA 104, 19790–19795 (2007).

    Article  CAS  Google Scholar 

  9. Donmez, I. & Patel, S.S. Coupling of DNA unwinding to nucleotide hydrolysis in a ring-shaped helicase. EMBO J. 27, 1718–1726 (2008).

    Article  CAS  Google Scholar 

  10. Richardson, J.P. Rho-dependent termination and ATPases in transcript termination. Biochim. Biophys. Acta 1577, 251–260 (2002).

    Article  CAS  Google Scholar 

  11. Cardinale, C.J. et al. Termination factor rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Science 320, 935–938 (2008).

    Article  CAS  Google Scholar 

  12. Gowrishankar, J. & Harinarayanan, R. Why is transcription coupled to translation in bacteria? Mol. Microbiol. 54, 598–603 (2004).

    Article  CAS  Google Scholar 

  13. Bogden, C.E., Fass, D., Bergman, N., Nichols, M.D. & Berger, J.M. The structural basis for terminator recognition by the rho transcription termination factor. Mol. Cell 3, 487–493 (1999).

    Article  CAS  Google Scholar 

  14. Hitchens, T.K., Zhan, Y., Richardson, L.V., Richardson, J.P. & Rule, G.S. Sequence-specific interactions in the RNA-binding domain of Escherichia coli transcription termination factor Rho. J. Biol. Chem. 281, 33697–33703 (2006).

    Article  CAS  Google Scholar 

  15. Schwartz, A., Walmacq, C., Rahmouni, A.R. & Boudvillain, M. Noncanonical interactions in the management of RNA structural blocks by the transcription termination rho helicase. Biochemistry 46, 9366–9379 (2007).

    Article  CAS  Google Scholar 

  16. Briercheck, D.M. et al. 1H, 15N and 13C resonance assignments and secondary structure determination of the RNA-binding domain of E. coli rho protein. J. Biomol. NMR 8, 429–444 (1996).

    Article  CAS  Google Scholar 

  17. Xu, Y., Kohn, H. & Widger, W.R. Mutations in the rho transcription termination factor that affect RNA tracking. J. Biol. Chem. 277, 30023–30030 (2002).

    Article  CAS  Google Scholar 

  18. Wei, R.R. & Richardson, J.P. Mutational changes of conserved residues in the Q-loop region of transcription factor rho greatly reduce secondary site RNA-binding. J. Mol. Biol. 314, 1007–1015 (2001).

    Article  CAS  Google Scholar 

  19. Richardson, J.P. Activation of rho protein ATPase requires simultaneous interaction at two kinds of nucleic acid-binding sites. J. Biol. Chem. 257, 5760–5766 (1982).

    CAS  PubMed  Google Scholar 

  20. Wei, R.R. & Richardson, J.P. Identification of an RNA-binding Site in the ATP binding domain of Escherichia coli Rho by H2O2/Fe-EDTA cleavage protection studies. J. Biol. Chem. 276, 28380–28387 (2001).

    Article  CAS  Google Scholar 

  21. Skordalakes, E. & Berger, J.M. Structure of the rho transcription terminator. Mechanism of mRNA recognition and helicase loading. Cell 114, 135–146 (2003).

    Article  CAS  Google Scholar 

  22. Skordalakes, E. & Berger, J.M. Structural insights into RNA-dependent ring closure and ATPase activation by the rho termination factor. Cell 127, 553–564 (2006).

    Article  CAS  Google Scholar 

  23. Wang, Y. & von Hippel, P.H. Escherichia coli transcription termination factor rho. I. ATPase activation by oligonucleotide cofactors. J. Biol. Chem. 268, 13940–13946 (1993).

    CAS  PubMed  Google Scholar 

  24. Walmacq, C., Rahmouni, A.R. & Boudvillain, M. Testing the steric exclusion model for hexameric helicases: substrate features that alter RNA-DNA unwinding by the transcription termination factor rho. Biochemistry 45, 5885–5895 (2006).

    Article  CAS  Google Scholar 

  25. Richardson, L.V. & Richardson, J.P. Rho-dependent termination of transcription is governed primarily by the upstream rho utilization (rut) sequences of a terminator. J. Biol. Chem. 271, 21597–21603 (1996).

    Article  CAS  Google Scholar 

  26. Fedorova, O., Boudvillain, M., Kawaoka, J. & Pyle, A.M. Nucleotide analog interference mapping and suppression: specific applications in studies of RNA tertiary structure, dynamic helicase mechanism and RNA-protein interactions. in Handbook of RNA Biochemistry Vol. 1 (eds. Hartmann, R.K., Bindereif, A., Schön, A. & Westhof, E.) 259–293 (Wiley-VCH, Weinheim, 2005).

  27. Walmacq, C., Rahmouni, A.R. & Boudvillain, M. Influence of substrate composition on the helicase activity of transcription termination factor rho: reduced processivity of rho hexamers during unwinding of RNA-DNA hybrid regions. J. Mol. Biol. 342, 403–420 (2004).

    Article  CAS  Google Scholar 

  28. Lucius, A.L., Maluf, N.K., Fischer, C.J. & Lohman, T.M. General methods for analysis of sequential “n-step” kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding. Biophys. J. 85, 2224–2239 (2003).

    Article  CAS  Google Scholar 

  29. Strobel, S.A. A chemogenetic approach to RNA function/structure analysis. Curr. Opin. Struct. Biol. 9, 346–352 (1999).

    Article  CAS  Google Scholar 

  30. Schwartz, A., Rahmouni, A.R. & Boudvillain, M. The functional anatomy of an intrinsic transcription terminator. EMBO J. 22, 3385–3394 (2003).

    Article  CAS  Google Scholar 

  31. Freier, S.M. & Altmann, K.H. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res. 25, 4429–4443 (1997).

    Article  CAS  Google Scholar 

  32. Wang, S. & Kool, E.T. Origins of the large differences in stability of DNA and RNA helices: C-5 methyl and 2′-hydroxyl effects. Biochemistry 34, 4125–4132 (1995).

    Article  CAS  Google Scholar 

  33. Wyatt, J.R. & Walker, G.T. Deoxynucleotide-containing oligoribonucleotide duplexes: stability and susceptibility to RNase V1 and RNase H. Nucleic Acids Res. 17, 7833–7842 (1989).

    Article  CAS  Google Scholar 

  34. LeCuyer, K.A., Behlen, L.S. & Uhlenbeck, O.C. Mutagenesis of a stacking contact in the MS2 coat protein-RNA complex. EMBO J. 15, 6847–6853 (1996).

    Article  CAS  Google Scholar 

  35. Loverix, S., Winquist, A., Stromberg, R. & Steyaert, J. An engineered ribonuclease preferring phosphorothioate RNA. Nat. Struct. Biol. 5, 365–368 (1998).

    Article  CAS  Google Scholar 

  36. Brautigam, C.A. & Steitz, T.A. Structural principles for the inhibition of the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. J. Mol. Biol. 277, 363–377 (1998).

    Article  CAS  Google Scholar 

  37. Smith, J.S. & Nikonowicz, E.P. Phosphorothioate substitution can substantially alter RNA conformation. Biochemistry 39, 5642–5652 (2000).

    Article  CAS  Google Scholar 

  38. Schwartz, A., Margeat, E., Rahmouni, A.R. & Boudvillain, M. Transcription termination factor rho can displace streptavidin from biotinylated RNA. J. Biol. Chem. 282, 31469–31476 (2007).

    Article  CAS  Google Scholar 

  39. Moffitt, J.R. et al. Intersubunit coordination in a homomeric ring ATPase. Nature (2009).

  40. Myong, S., Bruno, M.M., Pyle, A.M. & Ha, T. Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase. Science 317, 513–516 (2007).

    Article  CAS  Google Scholar 

  41. Kapanidis, A.N. et al. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314, 1144–1147 (2006).

    Article  Google Scholar 

  42. Brieba, L.G. & Sousa, R. T7 promoter release mediated by DNA scrunching. EMBO J. 20, 6826–6835 (2001).

    Article  CAS  Google Scholar 

  43. Galletto, R., Jezewska, M.J. & Bujalowski, W. Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: the effect of the 3′ arm and the stability of the dsDNA on the unwinding activity of the Escherichia coli DnaB helicase. J. Mol. Biol. 343, 101–114 (2004).

    Article  CAS  Google Scholar 

  44. Donmez, I., Rajagopal, V., Jeong, Y.J. & Patel, S.S. Nucleic acid unwinding by hepatitis C virus and bacteriophage t7 helicases is sensitive to base pair stability. J. Biol. Chem. 282, 21116–21123 (2007).

    Article  CAS  Google Scholar 

  45. Dutta, D., Chalissery, J. & Sen, R. Transcription termination factor rho prefers catalytically active elongation complexes for releasing RNA. J. Biol. Chem. 283, 20243–20251 (2008).

    Article  CAS  Google Scholar 

  46. Park, J.S. & Roberts, J.W. Role of DNA bubble rewinding in enzymatic transcription termination. Proc. Natl. Acad. Sci. USA 103, 4870–4875 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge J.M. Berger (Univ. California, Berkeley), J. Richardson (Indiana Univ.) and P.H. von Hippel (Univ. Oregon) for the gifts of plasmids and batches of purified wild-type Rho, F. Coste for help with molecular graphics, and T. Bizebard, E. Delagoutte, M. Nollmann and C. Royer for critical reading of the manuscript and helpful suggestions. This work was supported by grants from the Agence Nationale de la Recherche (PCV 2006) and the Conseil Régional du Centre (AO 2007).

Author information

Authors and Affiliations

Authors

Contributions

A.S. performed NAIM experiments and analyzed data; M.R. performed helicase kinetics and analyzed data; F.J. prepared WT and mutant Rho enzymes; E.M. performed QSAR and autocorrelation experiments, analyzed data and wrote the paper; A.R.R. analyzed data and wrote the paper; M.B. performed exploratory experiments, analyzed data and wrote the paper.

Corresponding author

Correspondence to Marc Boudvillain.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Methods (PDF 5448 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, A., Rabhi, M., Jacquinot, F. et al. A stepwise 2′-hydroxyl activation mechanism for the bacterial transcription termination factor Rho helicase. Nat Struct Mol Biol 16, 1309–1316 (2009). https://doi.org/10.1038/nsmb.1711

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1711

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing