Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe

Abstract

Histone variant H2A.Z has a conserved role in genome stability, although it remains unclear how this is mediated. Here we demonstrate that the fission yeast Swr1 ATPase inserts H2A.Z (Pht1) into chromatin and Kat5 acetyltransferase (Mst1) acetylates it. Deletion or an unacetylatable mutation of Pht1 leads to genome instability, primarily caused by chromosome entanglement and breakage at anaphase. This leads to the loss of telomere-proximal markers, though telomere protection and repeat length are unaffected by the absence of Pht1. Strikingly, the chromosome entanglement in pht1Δ anaphase cells can be rescued by forcing chromosome condensation before anaphase onset. We show that the condensin complex, required for the maintenance of anaphase chromosome condensation, prematurely dissociates from chromatin in the absence of Pht1. This and other findings suggest an important role for H2A.Z in the architecture of anaphase chromosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromatin-associated Pht1 is acetylated by Mst1.
Figure 2: Pht1 is inserted into chromatin by the SWR-C.
Figure 3: Unacetylatable pht1 mutants phenocopy pht1Δ.
Figure 4: Lack of Pht1Ac leads to chromosome segregation defects in anaphase.
Figure 5: Pht1 plays a role in chromosome architecture and compaction.
Figure 6: H2A.Z plays a role in higher-order chromosome architecture.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

References

  1. Henikoff, S., Furuyama, T. & Ahmad, K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet. 20, 320–326 (2005).

    Article  Google Scholar 

  2. Latham, J.A. & Dent, S.Y.R. Cross-regulation of histone modifications. Nat. Struct. Mol. Biol. 14, 1017–1024 (2007).

    Article  CAS  Google Scholar 

  3. Millar, C.B. & Grunstein, M. Genome-wide patterns of histone modifications in yeast. Nat. Rev. Mol. Cell Biol. 7, 657–666 (2006).

    Article  CAS  Google Scholar 

  4. Faast, R. et al. Histone variant H2A.Z is required for early mammalian development. Curr. Biol. 11, 1183–1187 (2001).

    Article  CAS  Google Scholar 

  5. Rangasamy, D., Greaves, I. & Tremethick, D.J. RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nat. Struct. Mol. Biol. 11, 650–655 (2004).

    Article  CAS  Google Scholar 

  6. Leach, T.J. et al. Histone H2A.Z is widely but non-randomly distributed in chromosomes of Drosophila melanogaster. J. Biol. Chem. 275, 23267–23272 (2000).

    Article  CAS  Google Scholar 

  7. Rangasamy, D., Berven, L., Ridgway, P. & Tremethick, D.J. Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J. 22, 1599–1607 (2003).

    Article  CAS  Google Scholar 

  8. Greaves, I.K., Rangasamy, D., Devoy, M., Marshall Graves, J.A. & Tremethick, D.J. The X and Y chromosomes assemble into H2A.Z, containing facultative heterochromatin, following meiosis. Mol. Cell. Biol. 26, 5394–5405 (2006).

    Article  CAS  Google Scholar 

  9. Keogh, M.-C. The Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4. Genes Dev. 20, 660–665 (2006).

    Article  CAS  Google Scholar 

  10. Millar, C.B., Xu, F., Zhang, K. & Grunstein, M. Acetylation of H2AZ lysine 14 is associated with genome-wide gene activity in yeast. Genes Dev. 20, 711–722 (2006).

    Article  CAS  Google Scholar 

  11. Babiarz, J.E., Halley, J.E. & Rine, J. Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomyces cerevisiae. Genes Dev. 20, 700–710 (2006).

    Article  CAS  Google Scholar 

  12. Ren, Q. & Gorovsky, M.A. Histone H2A.Z acetylation modulates an essential charge patch. Mol. Cell 7, 1329–1335 (2001).

    Article  CAS  Google Scholar 

  13. Bruce, K. et al. The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken. Nucleic Acids Res. 33, 5633–5639 (2005).

    Article  CAS  Google Scholar 

  14. Bonenfant, D., Coulot, M., Towbin, H., Schindler, P. & van Oostrum, J. Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry. Mol. Cell. Proteomics 5, 541–552 (2006).

    Article  CAS  Google Scholar 

  15. Krogan, N.J. et al. Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex and the histone acetyltransferase NuA4. Proc. Natl. Acad. Sci. USA 101, 13513–13518 (2004).

    Article  CAS  Google Scholar 

  16. Gómez, E.B., Nugent, R.L., Laria, S. & Forsburg, S.L. S. pombe histone acetyltransferase Mst1 (KAT5) is an essential protein required for damage response and chromosome segregation. Genetics 179, 757–771 (2008).

    Article  Google Scholar 

  17. Krogan, N.J. et al. A Snf2-Family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol. Cell 12, 1565–1576 (2003).

    Article  CAS  Google Scholar 

  18. Kobor, M.S. et al. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol. 2, e131 (2004).

    Article  Google Scholar 

  19. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

    Article  CAS  Google Scholar 

  20. Roguev, A. et al. Conservation and rewiring of functional modules revealed by an epistasis map (E-MAP) in fission yeast. Science 322, 405–410 (2008).

    Article  CAS  Google Scholar 

  21. Roguev, A., Wiren, M., Weissman, J.S. & Krogan, N.J. High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe. Nat. Methods 4, 861–866 (2007).

    Article  CAS  Google Scholar 

  22. Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 (2005).

    Article  CAS  Google Scholar 

  23. Collins, S.R. et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806–810 (2007).

    Article  CAS  Google Scholar 

  24. Collins, S.R., Schuldiner, M., Krogan, N.J. & Weissman, J.S. A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biol. 7, R63 (2006).

    Article  Google Scholar 

  25. Carr, A.M. et al. Analysis of a histone H2A variant from fission yeast: evidence for a role in chromosome stability. Mol. Gen. Genet. 245, 628–635 (1994).

    Article  CAS  Google Scholar 

  26. Ahmed, S., Dul, B., Qiu, X. & Walworth, N.C. Msc1 acts through histone H2A.Z to promote chromosome stability in Schizosaccharomyces pombe. Genetics 177, 1487–1497 (2008).

    Article  Google Scholar 

  27. Ekwall, K. Epigenetic control of centromere behaviour. Annu. Rev. Genet. 41, 63–81 (2007).

    Article  CAS  Google Scholar 

  28. Gregan, J. et al. The kinetochore proteins Pcs1 and Mde4 and heterochromatin are required to prevent merotelic orientation. Curr. Biol. 17, 1190–1200 (2007).

    Article  CAS  Google Scholar 

  29. Cooper, J.P., Nimmo, E.R., Allshire, R.C. & Cech, T.R. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385, 744–747 (1997).

    Article  CAS  Google Scholar 

  30. Ding, D.-Q., Yamamoto, A., Haraguchi, T. & Hiraoka, Y. Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev. Cell 6, 329–341 (2004).

    Article  CAS  Google Scholar 

  31. Vanoosthuyse, V., Prykhozhij, S. & Hardwick, K.G. Shugoshin 2 regulates localization of the chromosomal passenger proteins in fission yeast mitosis. Mol. Biol. Cell 18, 1657–1669 (2007).

    Article  CAS  Google Scholar 

  32. Kawashima, S.A. et al. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev. 21, 420–435 (2007).

    Article  CAS  Google Scholar 

  33. Nakazawa, N. et al. Dissection of the essential steps for condensin accumulation at kinetochores and rDNAs during fission yeast mitosis. J. Cell Biol. 180, 1115–1131 (2008).

    Article  CAS  Google Scholar 

  34. Saka, Y. et al. Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO J. 13, 4938–4952 (1994).

    Article  CAS  Google Scholar 

  35. Sutani, T. et al. Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev. 13, 2271–2283 (1999).

    Article  CAS  Google Scholar 

  36. Hagstrom, K.A., Holmes, V.F., Cozzarelli, N.R. & Meyer, B.J. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev. 16, 729–742 (2002).

    Article  CAS  Google Scholar 

  37. Hiraoka, Y., Toda, T. & Yanagida, M. The NDA3 gene of fission yeast encodes β-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell 39, 349–358 (1984).

    Article  CAS  Google Scholar 

  38. Chen, E.S. et al. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451, 734–737 (2008).

    Article  CAS  Google Scholar 

  39. Sipiczki, M. Where does fission yeast sit on the tree of life? Genome Biol. 1, 1011 (2000).

    Article  Google Scholar 

  40. O'Brien, S.J. et al. The promise of comparative genomics in mammals. Science 286, 458–462 (1999).

    Article  CAS  Google Scholar 

  41. Takahata, N. & Satta, Y. Evolution of the primate lineage leading to modern humans: phylogenetic and demographic inferences from DNA sequences. Proc. Natl. Acad. Sci. USA 94, 4811–4815 (1997).

    Article  CAS  Google Scholar 

  42. Shevchenko, A. et al. Chromatin central: towards the comparative proteome by accurate mapping of the yeast proteomic environment. Genome Biol. 9, R167 (2008).

    Article  Google Scholar 

  43. Ahmed, S., Palermo, C., Wan, S. & Walworth, N.C. A novel protein with similarities to Rb binding protein 2 compensates for loss of chk1 function and affects histone modification in fission yeast. Mol. Cell. Biol. 24, 3660–3669 (2004).

    Article  CAS  Google Scholar 

  44. Choi, K. et al. Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development. Development 134, 1931–1941 (2007).

    Article  CAS  Google Scholar 

  45. Ruhl, D.D. et al. Purification of a human SCRAP complex that remodels chromatin by incorporating the histone variant H2A.Z into nucleosomes. Biochemistry 45, 5671–5677 (2006).

    Article  CAS  Google Scholar 

  46. Kusch, T. et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306, 2084–2087 (2004).

    Article  CAS  Google Scholar 

  47. Updike, D.L. & Mango, S.E. Temporal regulation of foregut development by HTZ-1/H2A.Z and PHA-4/FoxA. PLoS Genet. 2, e161 (2006).

    Article  Google Scholar 

  48. Vagnarelli, P. et al. Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis. Nat. Cell Biol. 8, 1133–1142 (2006).

    Article  CAS  Google Scholar 

  49. Fiedler, D. et al. Functional organization of the S. cerevisiae phosphorylation network. Cell 136, 952–963 (2009).

    Article  CAS  Google Scholar 

  50. Nabetani, A., Koujin, T., Tsutsumi, C., Haraguchi, T. & Hiraoka, Y. A conserved protein, Nuf2, is implicated in connecting the centromere to the spindle during chromosome segregation: a link between the kinetochore function and the spindle checkpoint. Chromosoma 110, 322–334 (2001).

    Article  CAS  Google Scholar 

  51. Gulli, M.P. et al. gar2 is a nucleolar protein from Schizosaccharomyces pombe required for 18S rRNA and 40S ribosomal subunit accumulation. Nucleic Acids Res. 23, 1912–1918 (1995).

    Article  CAS  Google Scholar 

  52. Hagstrom, K.A. & Meyer, B.J. Condensin and cohesin: more than chromosome compactor and glue. Nat. Rev. Genet. 4, 520–534 (2003).

    Article  CAS  Google Scholar 

  53. Hirano, T. Condensins: Organizing and segregating the genome. Curr. Biol. 15, R265–R275 (2005).

    Article  CAS  Google Scholar 

  54. Dunaway, S. & Walworth, N.C. Assaying the DNA damage checkpoint in fission yeast. Methods 33, 260–263 (2004).

    Article  CAS  Google Scholar 

  55. Lyne, R. et al. Whole-genome microarrays of fission yeast: characteristics, accuracy, reproducibility, and processing of array data. BMC Genomics 4, 27 (2003).

    Article  Google Scholar 

  56. Niwa, O., Matsumoto, T. & Yanagida, M. Construction of a mini-chromosome by deletion and its mitotic and meiotic behaviour in fission yeast. Mol. Genet. Genomics 203, 397–405 (1986).

    Article  CAS  Google Scholar 

  57. Krogan, N.J. et al. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol. Cell. Biol. 22, 6979–6992 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Allshire (Univ. of Edinburgh), M. Bühler (Friedrich Miescher Institute for Biomedical Research), J. Cooper (Cancer Research UK), D. Finley (Harvard Medical School), S. Forsburg (Univ. of Southern California, Los Angeles), K. Gull (Univ. of Oxford), C. Hoffmann (Boston College), J. Kanoh (Kyoto Univ.), R. Maraia (NIH), D. Moazed (Harvard Medical School), T. Nakamura (Univ. of Illinois at Chicago), F. Neumann (Rockefeller Univ.), P. Nurse (Rockefeller Univ.), M. O'Connell (Mount Sinai School of Medicine), J. Partridge (St. Judes Children's Research Hospital), M. Yanagida (Kyoto Univ.) and the Yeast Genome Resource Center (Osaka City Univ.) for the generous supply of antibodies and yeast strains (detailed in Supplementary Tables 3 and 4). We also thank G. Zhong, S. Chandran, T. Punna and M. Shales for technical support. Finally, we are grateful to G. Ingram for expertise with the Telomere Repeat Length assay. Work in the J.B. lab is funded by Cancer Research UK, T.K. lab by a start-up grant from the Ontario Cancer Institute, K.G.H. lab by a program grant from the Wellcome Trust and M.-C.K. lab by an NCI Cancer Center Support grant to Albert Einstein College of Medicine (2P30CA013330) and the Speaker's Fund for Biomedical Research: Toward the Science of Patient Care, awarded by the City of New York.

Author information

Authors and Affiliations

Authors

Contributions

H.-S.K. was responsible for the data in Figure 1 (with A.T. contributing Fig. 1c), Figure 2 (with MS help from J.F., T.K., A.E. and J.F.G.), Figures 5c and 5d and Supplementary Figures 1 and 3. V.V. (with help from K.G.H.) was responsible for the data in Figures 4 and 5a–c and Supplementary Figures 2, 3a and 4. S.W. and J.B. performed and analyzed the microarrays in Figures 3a and 3b; A.R. and N.J.K. performed and analyzed the genetic screens in Figures 3c–f. L.R.C. and C.S.B. created the antibodies to Pht1 used in Figure 1. H.-S.K., V.V. and M.-C.K. planned experiments, analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Vincent Vanoosthuyse or Michael-Christopher Keogh.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–5 (PDF 6161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HS., Vanoosthuyse, V., Fillingham, J. et al. An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe. Nat Struct Mol Biol 16, 1286–1293 (2009). https://doi.org/10.1038/nsmb.1688

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1688

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing