Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Positive selection of DNA-protein interactions in mammalian cells through phenotypic coupling with retrovirus production


Through the shuffling of predefined modular zinc finger domains with predictable target site recognition in vitro, we have generated a large repertoire of artificial transcription factors with five zinc finger domains (TFZFs). Here we report an effective strategy for the selection of ATF libraries by coupling expression of transcriptional activators of the promoter of interest to the enhanced production of retroviral vector particles transferring the TFZF encoding gene. Using this strategy, we successfully selected specific TFZFs that upregulate the expression of the γ-globin promoter. Selected transcription factors induced the expression of γ-globin when coupled to an activation domain and reduced expression when linked to a repression domain. This new retroviral approach might be used to select other TFZFs but might also be generalized for the selection of other protein and small-molecule interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic illustration of the selection strategy.
Figure 2: Selected TFZF libraries show increased GFP-positive transduced cells after each round of selection.
Figure 3: Selected TFZFs shows repression of γ-globin promoter expression when fused to the repressor domain KRAB.
Figure 4: Activation of human γ-globin in β-YAC bone marrow cells (BMCs) containing selected zinc fingers, as measured by RT-PCR.


  1. 1

    Beerli, R.R. & Barbas, C.F. III. Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20, 135–141 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Dreier, B., Beerli, R.R., Segal, D.J., Flippin, J.D. & Barbas, C.F. III. Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 276, 29466–29478 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Greisman, H.A. & Pabo, C.O. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275, 657–661 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Liu, P.Q. et al. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J. Biol. Chem. 276, 11323–11334 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Segal, D.J., Dreier, B., Beerli, R.R. & Barbas, C.F. III. Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96, 2758–2763 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Beerli, R.R., Dreier, B. & Barbas, C.F. III. Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA 97, 1495–1500 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Stege, J.T., Guan, X., Ho, T., Beachy, R.N. & Barbas, C.F. III. Controlling gene expression in plants using synthetic zinc finger transcription factors. Plant J. 32, 1077–1086 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Zhang, L. et al. Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J. Biol. Chem. 275, 33850–33860 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Blancafort, P., Magnenat, L. & Barbas, C.F. III. Scanning the human genome with combinatorial transcription factor libraries. Nat. Biotechnol. 21, 269–274 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Magnenat, L., Blancafort, P. & Barbas, C.F. III. In vivo selection of combinatorial libraries and designed affinity maturation of polydactyl zinc finger transcription factors for ICAM-1 provides new insights into gene regulation. J. Mol. Biol. 341, 635–649 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Chada, K., Magram, J. & Costantini, F. An embryonic pattern of expression of a human fetal globin gene in transgenic mice. Nature 319, 685–689 (1986).

    CAS  Article  Google Scholar 

  12. 12

    Chada, K. et al. Specific expression of a foreign β-globin gene in erythroid cells of transgenic mice. Nature 314, 377–380 (1985).

    CAS  Article  Google Scholar 

  13. 13

    Kollias, G., Wrighton, N., Hurst, J. & Grosveld, F. Regulated expression of human Aγ-, β-, and hybrid γβ-globin genes in transgenic mice: manipulation of the developmental expression patterns. Cell 46, 89–94 (1986).

    CAS  Article  Google Scholar 

  14. 14

    Peterson, K.R. Hemoglobin switching: new insights. Curr. Opin. Hematol. 10, 123–129 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Rutherford, T. & Nienhuis, A.W. Human globin gene promoter sequences are sufficient for specific expression of a hybrid gene transfected into tissue culture cells. Mol. Cell. Biol. 7, 398–402 (1987).

    CAS  Article  Google Scholar 

  16. 16

    Li, Q., Peterson, K.R., Fang, X. & Stamatoyannopoulos, G. Locus control regions. Blood 100, 3077–3086 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Wijgerde, M., Grosveld, F. & Fraser, P. Transcription complex stability and chromatin dynamics in vivo. Nature 377, 209–213 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Murray, N., Serjeant, B.E. & Serjeant, G.R. Sickle cell-hereditary persistence of fetal haemoglobin and its differentiation from other sickle cell syndromes. Br. J. Haematol. 69, 89–92 (1988).

    CAS  Article  Google Scholar 

  19. 19

    Swank, R.A. & Stamatoyannopoulos, G. Fetal gene reactivation. Curr. Opin. Genet. Dev. 8, 366–370 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Blouin, M.J. et al. Genetic correction of sickle cell disease: insights using transgenic mouse models. Nat. Med. 6, 177–182 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Gräslund, T., Li, X., Magnenat, L., Popkov, M. & Barbas, C.F. III. Exploring strategies for the design of artificial transcription factors: targeting sites proximal to known regulatory regions for the induction of γ-globin expression and the treatment of sickle cell disease. J. Biol. Chem. 280, 3707–3714 (2005).

    Article  Google Scholar 

  22. 22

    May, C. et al. Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin. Nature 406, 82–86 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Blau, C.A. et al. γ-Globin gene expression in chemical inducer of dimerization (CID)-dependent multipotential cells established from human β-globin locus yeast artificial chromosome (β-YAC) transgenic mice. J. Biol. Chem. 280, 36642–36647 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Collis, P., Antoniou, M. & Grosveld, F. Definition of the minimal requirements within the human β-globin gene and the dominant control region for high level expression. EMBO J. 9, 233–240 (1990).

    CAS  Article  Google Scholar 

  25. 25

    Powars, D.R., Chan, L. & Schroeder, W.A. The influence of fetal hemoglobin on the clinical expression of sickle cell anemia. Ann. NY Acad. Sci. 565, 262–278 (1989).

    CAS  Article  Google Scholar 

  26. 26

    Rebar, E.J. et al. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat. Med. 8, 1427–1432 (2002).

    CAS  Article  Google Scholar 

  27. 27

    Maeder, M.L. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31, 294–301 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Lund, C.V., Blancafort, P., Popkov, M. & Barbas, C.F. III. Promoter-targeted phage display selections with preassembled synthetic zinc finger libraries for endogenous gene regulation. J. Mol. Biol. 340, 599–613 (2004).

    CAS  Article  Google Scholar 

  29. 29

    Gordley, R.M., Smith, J.D., Graslund, T. & Barbas, C.F. III. Evolution of programmable zinc finger-recombinases with activity in human cells. J. Mol. Biol. 367, 802–813 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Miller, J.C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Nomura, W. & Barbas, C.F. III. In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase. J. Am. Chem. Soc. 129, 8676–8677 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Szczepek, M. et al. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat. Biotechnol. 25, 786–793 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Xu, G.L. & Bestor, T.H. Cytosine methylation targeted to pre-determined sequences. Nat. Genet. 17, 376–378 (1997).

    CAS  Article  Google Scholar 

  35. 35

    Mandell, J.G. & Barbas, C.F. III. Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res. 34, W516–W523 (2006).

    CAS  Article  Google Scholar 

Download references


Thanks to F.C. Costa and R. Neades for technical assistance with the BMC transfections and expression assays. This study was supported by the Skaggs Institute for Chemical Biology and in part by US National Institutes of Health Grants RO1 DK61803 and R01GM065059 (C.F.B.) and R01 DK061804 (K.R.P.).

Author information




U.T., K.R.P. and C.F.B. designed the research; U.T., K.R.P., B.G. and H.F. performed the experiments; U.T., K.R.P. and C.F.B., wrote the manuscript, which all authors commented on.

Corresponding author

Correspondence to Carlos F Barbas III.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Methods (PDF 408 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tschulena, U., Peterson, K., Gonzalez, B. et al. Positive selection of DNA-protein interactions in mammalian cells through phenotypic coupling with retrovirus production. Nat Struct Mol Biol 16, 1195–1199 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing