Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Active site remodeling switches HIV specificity of antiretroviral TRIMCyp

Abstract

TRIMCyps are primate antiretroviral proteins that potently inhibit HIV replication. Here we describe how rhesus macaque TRIMCyp (RhTC) has evolved to target and restrict HIV-2. We show that the ancestral cyclophilin A (CypA) domain of RhTC targets HIV-2 capsid with weak affinity, which is strongly increased in RhTC by two mutations (D66N and R69H) at the expense of HIV-1 binding. These mutations disrupt a constraining intramolecular interaction in CypA, triggering the complete restructuring (>16 Å) of an active site loop. This new configuration discriminates between divergent HIV-1 and HIV-2 loop conformations mediated by capsid residue 88. Viral sensitivity to RhTC restriction can be conferred or abolished by mutating position 88. Furthermore, position 88 determines the susceptibility of naturally occurring HIV-1 sequences to restriction. Our results reveal the complex molecular, structural and thermodynamic changes that underlie the ongoing evolutionary race between virus and host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HIV-2 binds CypA with weak affinity.
Figure 2: Two CypA mutations dictate lentiviral binding and restriction sensitivity.
Figure 3: Structure of the N-terminal capsid domain of HIV-2.
Figure 4: RhTC CypA has been re-targeted from HIV-1 to HIV-2.
Figure 5: Capsid residue 88 is a key determinant of lentiviral sensitivity to RhTC.
Figure 6: CypA targets HIV-1 and HIV-2 using different mechanisms.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Ozato, K., Shin, D.M., Chang, T.H. & Morse, H.C. III. TRIM family proteins and their emerging roles in innate immunity. Nat. Rev. Immunol. 8, 849–860 (2008).

    Article  CAS  Google Scholar 

  2. Langelier, C.R. et al. Biochemical characterization of a recombinant TRIM5α protein that restricts human immunodeficiency virus type 1 replication. J. Virol. 82, 11682–11694 (2008).

    Article  CAS  Google Scholar 

  3. Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004).

    Article  CAS  Google Scholar 

  4. Stremlau, M., Perron, M.J., Welikala, S. & Sodroski, J. Species-specific variation in the B30.2(SPRY) domain of TRIM5α determines the potency of human immunodeficiency virus restriction. J. Virol. 79, 3139–3145 (2005).

    Article  CAS  Google Scholar 

  5. Song, B. et al. The B30.2(SPRY) domain of the retroviral restriction factor TRIM5α exhibits lineage-specific length and sequence variation in primates. J. Virol. 79, 6111–6121 (2005).

    Article  CAS  Google Scholar 

  6. Perez-Caballero, D., Hatziioannou, T., Yang, A., Cowan, S. & Bieniasz, P.D. Human tripartite motif 5α domains responsible for retrovirus restriction activity and specificity. J. Virol. 79, 8969–8978 (2005).

    Article  CAS  Google Scholar 

  7. Stremlau, M. et al. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5α restriction factor. Proc. Natl. Acad. Sci. USA 103, 5514–5519 (2006).

    Article  CAS  Google Scholar 

  8. Sayah, D.M., Sokolskaja, E., Berthoux, L. & Luban, J. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430, 569–573 (2004).

    Article  CAS  Google Scholar 

  9. Nisole, S., Lynch, C., Stoye, J.P. & Yap, M.W.A. Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. Proc. Natl. Acad. Sci. USA 101, 13324–13328 (2004).

    Article  CAS  Google Scholar 

  10. Franke, E.K., Yuan, H.E. & Luban, J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372, 359–362 (1994).

    Article  CAS  Google Scholar 

  11. Luban, J., Bossolt, K.L., Franke, E.K., Kalpana, G.V. & Goff, S.P. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73, 1067–1078 (1993).

    Article  CAS  Google Scholar 

  12. Thali, M. et al. Functional association of cyclophilin A with HIV-1 virions. Nature 372, 363–365 (1994).

    Article  CAS  Google Scholar 

  13. Towers, G.J. et al. Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat. Med. 9, 1138–1143 (2003).

    Article  CAS  Google Scholar 

  14. Brennan, G., Kozyrev, Y. & Hu, S.L. TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. Proc. Natl. Acad. Sci. USA 105, 3569–3574 (2008).

    Article  CAS  Google Scholar 

  15. Virgen, C.A., Kratovac, Z., Bieniasz, P.D. & Hatziioannou, T. Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species. Proc. Natl. Acad. Sci. USA 105, 3563–3568 (2008).

    Article  CAS  Google Scholar 

  16. Wilson, S.J. et al. Independent evolution of an antiviral TRIMCyp in rhesus macaques. Proc. Natl. Acad. Sci. USA 105, 3557–3562 (2008).

    Article  CAS  Google Scholar 

  17. Braaten, D., Franke, E.K. & Luban, J. Cyclophilin A is required for the replication of group M human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus SIV(CPZ)GAB but not group O HIV-1 or other primate immunodeficiency viruses. J. Virol. 70, 4220–4227 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoo, S. et al. Molecular recognition in the HIV-1 capsid/cyclophilin A complex. J. Mol. Biol. 269, 780–795 (1997).

    Article  CAS  Google Scholar 

  19. Besnier, C., Takeuchi, Y. & Towers, G. Restriction of lentivirus in monkeys. Proc. Natl. Acad. Sci. USA 99, 11920–11925 (2002).

    Article  CAS  Google Scholar 

  20. Gamble, T.R. et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285–1294 (1996).

    Article  CAS  Google Scholar 

  21. Yoo, S. et al. Molecular recognition in the HIV-1 capsid/cyclophilin A complex. J. Mol. Biol. 269, 780–795 (1997).

    Article  CAS  Google Scholar 

  22. Tang, C., Ndassa, Y. & Summers, M.F. Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein. Nat. Struct. Biol. 9, 537–543 (2002).

    CAS  PubMed  Google Scholar 

  23. Lin, T.Y. & Emerman, M. Cyclophilin A interacts with diverse lentiviral capsids. Retrovirology 3, 70 (2006).

    Article  Google Scholar 

  24. Ke, H.M., Zydowsky, L.D., Liu, J. & Walsh, C.T. Crystal structure of recombinant human T-cell cyclophilin A at 2.5 Å resolution. Proc. Natl. Acad. Sci. USA 88, 9483–9487 (1991).

    Article  CAS  Google Scholar 

  25. Howard, B.R., Vajdos, F.F., Li, S., Sundquist, W.I. & Hill, C.P. Structural insights into the catalytic mechanism of cyclophilin A. Nat. Struct. Biol. 10, 475–481 (2003).

    Article  CAS  Google Scholar 

  26. Ikeda, Y., Ylinen, L., Kahar-Bador, M. & Towers, G.J. The influence of gag on HIV-1 species specific tropism. J. Virol. 78, 11816–11822 (2004).

    Article  CAS  Google Scholar 

  27. Gao, F. et al. Human infection by genetically diverse SIVSM-related HIV-2 in west Africa. Nature 358, 495–499 (1992).

    Article  CAS  Google Scholar 

  28. Gao, F. et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397, 436–441 (1999).

    Article  CAS  Google Scholar 

  29. Roques, P. et al. Phylogenetic analysis of 49 newly derived HIV-1 group O strains: high viral diversity but no group M-like subtype structure. Virology 302, 259–273 (2002).

    Article  CAS  Google Scholar 

  30. Braaten, D. et al. Cyclosporine A-resistant human immunodeficiency virus type 1 mutants demonstrate that Gag encodes the functional target of cyclophilin A. J. Virol. 70, 5170–5176 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ylinen, L.M., Keckesova, Z., Wilson, S.J., Ranasinghe, S. & Towers, G.J. Differential restriction of HIV-2 and SIVmac by TRIM5α alleles. J. Virol. 79, 11580–11587 (2005).

    Article  CAS  Google Scholar 

  32. Van Valen, L. A new evolutonary law. Evol. Theory 1, 1–30 (1973).

    Google Scholar 

  33. Yap, M.W., Nisole, S. & Stoye, J.P. A single amino acid change in the SPRY domain of human TRIM5α leads to HIV-1 restriction. Curr. Biol. 15, 73–78 (2005).

    Article  CAS  Google Scholar 

  34. Schröfelbauer, B., Chen, D. & Landau, N.R. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc. Natl. Acad. Sci. USA 101, 3927–3932 (2004).

    Article  Google Scholar 

  35. Zufferey, R., Nagy, D., Mandel, R.J., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875 (1997).

    Article  CAS  Google Scholar 

  36. Griffin, S.D., Allen, J.F. & Lever, A.M. The major human immunodeficiency virus type 2 (HIV-2) packaging signal is present on all HIV-2 RNA species: cotranslational RNA encapsidation and limitation of Gag protein confer specificity. J. Virol. 75, 12058–12069 (2001).

    Article  CAS  Google Scholar 

  37. Zheng, L., Baumann, U. & Reymond, J.L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32, e115 (2004).

    Article  Google Scholar 

  38. Zhang, F., Hatziioannou, T., Perez-Caballero, D., Derse, D. & Bieniasz, P.D. Antiretroviral potential of human tripartite motif-5 and related proteins. Virology 353, 396–409 (2006).

    Article  CAS  Google Scholar 

  39. Passerini, L.D., Keckesova, Z. & Towers, G.J. Retroviral restriction factors Fv1 and TRIM5α act independently and can compete for incoming virus before reverse transcription. J. Virol. 80, 2100–2105 (2006).

    Article  CAS  Google Scholar 

  40. Wiseman, T., Williston, S., Brandts, J.F. & Lin, L.N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131–137 (1989).

    Article  CAS  Google Scholar 

  41. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

Download references

Acknowledgements

This work was funded by the UK Medical Research Council and a Wellcome Trust fellowship (WT076608) to G.J.T. We would like to thank the European Synchrotron Radiation Facility (ESRF) staff at beamline ID14-1 and local contact E. Fioravanti. We also thank S. Hue, P. Bieniasz and J. Heeney for helpful discussion and A. Lever, D. Trono and A. Thrasher and L. Gurtler via the National Institute of Biological Standards and Controls (NIBSC) AIDS Reagents Programme, for reagents.

Author information

Authors and Affiliations

Authors

Contributions

A.J.P. and F.M. performed experiments and analyzed data; M.L., L.M.J.Y., T.S. & S.J.W. performed additional experiments; G.J.T. and L.C.J. analyzed data and wrote the manuscript.

Corresponding authors

Correspondence to Greg J Towers or Leo C James.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 269 kb)

Supplementary Movie 1

D66N and R69H trigger conformational rearrangement in CypA. Structural intermediates between the RhCyp structure and parental CypA structure (2CPL)2 were generated using the morph server (http://www.molmovdb.org/molmovdb/morph/) to illustrate the degree of rearrangement caused by the two mutations D66N and R69H. Structures were rendered in PyMOL1 coloring the secondary structure in grey and the side-chains of Loop64-74 in yellow. The initial frame depicts the CypA structure in which D66 constrains the loop through a bifurcated hydrogen bond with the main-chain. Mutation of this residue and R69 leads to complete loop rearrangement and the new conformation present in RhCyp. (MOV 3063 kb)

Supplementary Movie 2

Loss of interaction with rearranged Loop64-74 abrogates HIV-1 binding to RhCyp. The CypA structural intermediates generated in Movie 1 were superposed on a CypA domain from the HIV1:CypA complex (1AK4)3. CypA is shown as a semi-transparent grey molecular surface with the side-chains of Loop64-74 in yellow. The HIV-1 N-terminal capsid domain is shown in green together with the side-chains of the CypA-binding loop. The initial frame depicts the solved complex in which the capsid interacts with Loop64-74, in particular between CA A88 and G72 and CA H87 and N71. Rearrangement of Loop64-74 leads to loss of these interactions. (MOV 1714 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, A., Marzetta, F., Lammers, M. et al. Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. Nat Struct Mol Biol 16, 1036–1042 (2009). https://doi.org/10.1038/nsmb.1667

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1667

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing