Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics and function of compact nucleosome arrays

Abstract

The packaging of eukaryotic DNA into chromatin sterically occludes polymerases, recombinases and repair enzymes. How chromatin structure changes to allow their actions is unknown. We constructed defined fluorescently labeled trinucleosome arrays, allowing analysis of chromatin conformational dynamics via fluorescence resonance energy transfer (FRET). The arrays undergo reversible Mg2+-dependent folding similar to that of longer arrays studied previously. We define two intermediate conformational states in the reversible folding of the nucleosome arrays and characterize the microscopic rate constants. Nucleosome arrays are highly dynamic even when compact, undergoing conformational fluctuations on timescales in the second to microsecond range. Compact states of the arrays allow binding to DNA within the central nucleosome via site exposure. Protein binding can also drive decompaction of the arrays. Thus, our results reveal multiple modes by which spontaneous chromatin fiber dynamics allow for the invasion and action of DNA-processing protein complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FRET analyses of nucleosome array compaction induced by Mg2+.
Figure 2: FRET analyses of site exposure in mononucleosomes and in nucleosome arrays in the absence of Mg2+.
Figure 3: FRET analyses of site exposure and decompaction for nucleosome arrays in 1 mM Mg2+.
Figure 4: Conformational dynamics of nucleosome arrays.
Figure 5: Minimal kinetic scheme for nucleosome array dynamics in 1 mM Mg2+.

Similar content being viewed by others

References

  1. Richmond, T.J. & Davey, C. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Robinson, P.J. & Rhodes, D. Structure of the '30 nm' chromatin fibre: a key role for the linker histone. Curr. Opin. Struct. Biol. 16, 336–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Grewal, S.I. & Elgin, S.C. Transcription and RNA interference in the formation of heterochromatin. Nature 447, 399–406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bühler, M. & Moazed, D. Transcription and RNAi in heterochromatic gene silencing. Nat. Struct. Mol. Biol. 14, 1041–1048 (2007).

    Article  PubMed  Google Scholar 

  5. Fousteri, M., van Hoffen, A., Vargova, H. & Mullenders, L.H. Repair of DNA lesions in chromosomal DNA impact of chromatin structure and Cockayne syndrome proteins. DNA Repair (Amst.) 4, 919–925 (2005).

    Article  CAS  Google Scholar 

  6. Topp, C.N. & Dawe, R.K. Reinterpreting pericentromeric heterochromatin. Curr. Opin. Plant Biol. 9, 647–653 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Brutlag, D.L. Molecular arrangement and evolution of heterochromatic DNA. Annu. Rev. Genet. 14, 121–144 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, L. & Widom, J. Mechanism of transcriptional silencing in yeast. Cell 120, 37–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, D. et al. Condensed mitotic chromatin is accessible to transcription factors and chromatin structural proteins. J. Cell Biol. 168, 41–54 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheutin, T. et al. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299, 721–725 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Polach, K.J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254, 130–149 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Li, G. & Widom, J. Nucleosomes facilitate their own invasion. Nat. Struct. Mol. Biol. 11, 763–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Li, G., Levitus, M., Bustamante, C. & Widom, J. Rapid spontaneous accessibility of nucleosomal DNA. Nat. Struct. Mol. Biol. 12, 46–53 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Bucceri, A., Kapitza, K. & Thoma, F. Rapid accessibility of nucleosomal DNA in yeast on a second time scale. EMBO J. 25, 3123–3132 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bernstein, B.E., Liu, C., Humphrey, E.L., Perlstein, E.O. & Schreiber, S. Global nucleosome occupancy in yeast. Genome Biol. 5, R62 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tirosh, I. & Barkai, N. Two strategies for gene regulation by promoter nucleosomes. Genome Res. 18, 1084–1091 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adams, C.C. & Workman, J.L. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol. Cell. Biol. 15, 1405–1421 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Polach, K.J. & Widom, J. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800–812 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Miller, J.A. & Widom, J. Collaborative competition mechanism for gene activation in vivo. Mol. Cell. Biol. 23, 1623–1632 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vashee, S., Willie, J. & Kodadek, T. Synergistic activation of transcription by physiologically unrelated transcription factors through cooperative DNA-binding. Biochem. Biophys. Res. Commun. 247, 530–535 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Luger, K. & Hansen, J.C. Nucleosome and chromatin fiber dynamics. Curr. Opin. Struct. Biol. 15, 188–196 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Widom, J. Toward a unified model of chromatin folding. Annu. Rev. Biophys. Biophys. Chem. 18, 365–395 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Poirier, M.G., Bussiek, M., Langowski, J. & Widom, J. Spontaneous access to DNA target sites in folded chromatin fibers. J. Mol. Biol. 379, 772–786 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clegg, R.M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Schalch, T., Duda, S., Sargent, D. & Richmond, T. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436, 138–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Dorigo, B. et al. Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306, 1571–1573 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Routh, A., Sandin, S. & Rhodes, D. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc. Natl. Acad. Sci. USA 105, 8872–8877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 327, 85–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Bussiek, M., Tóth, K., Schwarz, N. & Langowski, J. Trinucleosome compaction studied by fluorescence energy transfer and scanning force microscopy. Biochemistry 45, 10838–10846 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Du, Q., Smith, C., Shiffeldrim, N., Vologodskaia, M. & Vologodskii, A. Cyclization of short DNA fragments and bending fluctuations of the double helix. Proc. Natl. Acad. Sci. USA 102, 5397–5402 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iqbal, A. et al. Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids. Proc. Natl. Acad. Sci. USA 105, 11176–11181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bao, Y., White, C.L. & Luger, K. Nucleosome core particles containing a poly(dA.dT) sequence element exhibit a locally distorted DNA structure. J. Mol. Biol. 361, 617–624 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Yao, J., Lowary, P.T. & Widom, J. Direct detection of linker DNA bending in defined-length oligomers of chromatin. Proc. Natl. Acad. Sci. USA 87, 7603–7607 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Robinson, P.J., Fairall, L., Huynh, V.A. & Rhodes, D. EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure. Proc. Natl. Acad. Sci. USA 103, 6506–6511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shogren-Knaak, M. et al. Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Widom, J. Chromatin structure: linking structure to function with histone H1. Curr. Biol. 8, R788–R791 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Ushinsky, S.C. et al. Histone H1 in Saccharomyces cerevisiae. Yeast 13, 151–161 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Bates, D.L. & Thomas, J.O. Histones H1 and H5: one or two molecules per nucleosome? Nucleic Acids Res. 9, 5883–5894 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fan, Y. et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123, 1199–1212 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Anderson, J.D., Thåström, A. & Widom, J. Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation. Mol. Cell. Biol. 22, 7147–7157 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anderson, J.D. & Widom, J. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 296, 979–987 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Polach, K.J. & Widom, J. Restriction enzymes as probes of nucleosome stability and dynamics. Methods Enzymol. 304, 278–298 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Thåström, A., Bingham, L.M. & Widom, J. Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning. J. Mol. Biol. 338, 695–709 (2004).

    Article  PubMed  Google Scholar 

  45. Feng, H.P., Scherl, D.S. & Widom, J. Lifetime of the histone octamer studied by continuous-flow quasielastic light scattering: test of a model for nucleosome transcription. Biochemistry 32, 7824–7831 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Little, J.W. et al. Cleavage of LexA repressor. Methods Enzymol. 244, 266–284 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Thåström, A., Lowary, P.T. & Widom, J. Measurement of histone-DNA interaction free energy in nucleosomes. Methods 33, 33–44 (2004).

    Article  PubMed  Google Scholar 

  48. Bonnet, G., Krichevsky, O. & Libchaber, A. Kinetics of conformational fluctuations in DNA hairpin-loops. Proc. Natl. Acad. Sci. USA 95, 8602–8606 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krichevsky, O. & Bonnet, G. Fluorescence correlation spectroscopy: the technique and its applications. Reports on Progress in Physics (2002).

  50. Hess, S.T., Huang, S., Heikal, A.A. & Webb, W. Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41, 697–705 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Elson, E.L. & Webb, W.W. Concentration correlation spectroscopy: a new biophysical probe based on occupation number fluctuations. Annu. Rev. Biophys. Bioeng. 4, 311–334 (1975).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Elson (Washington University) and E. Matayoshi (Abbott Laboratories) for access to Zeiss Confocor 2 instruments, on which preliminary FCS experiments were carried out. We thank J. Little (University of Arizona) for the LexA expression plasmid. We thank E. Elson and E. Matayoshi and members of the Widom laboratory for discussions, K. Swinger (Northwestern University) for help with the trinucleosome structure figures and the Keck Biophysics and Biological Imaging Facilities at Northwestern University for the use of instruments. M.G.P. acknowledges support from US National Institutes of Health postdoctoral fellowship F32 GM072306 and a Career Award in the Biomedical Sciences from the Burroughs-Wellcome Fund. J.W. acknowledges research support from US National Institutes of Health grants R01 GM54692 and R01 GM58617.

Author information

Authors and Affiliations

Authors

Contributions

M.G.P. designed, executed and interpreted experiments and wrote some of the paper; E.O. designed, executed and interpreted experiments; H.S.T. designed, executed and interpreted experiments; J.W. designed and interpreted experiments and wrote some of the paper.

Corresponding authors

Correspondence to Michael G Poirier or Jonathan Widom.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Methods and Supplementary Discussion (PDF 2012 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poirier, M., Oh, E., Tims, H. et al. Dynamics and function of compact nucleosome arrays. Nat Struct Mol Biol 16, 938–944 (2009). https://doi.org/10.1038/nsmb.1650

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1650

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing