Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of SHH in complex with HHIP reveals a recognition role for the Shh pseudo active site in signaling

Abstract

Hedgehog (Hh) signaling is crucial for many aspects of embryonic development, whereas dysregulation of this pathway is associated with several types of cancer. Hedgehog-interacting protein (Hhip) is a surface receptor antagonist that is equipotent against all three mammalian Hh homologs. The crystal structures of human HHIP alone and bound to Sonic hedgehog (SHH) now reveal that HHIP is comprised of two EGF domains and a six-bladed β-propeller domain. In the complex structure, a critical loop from HHIP binds the pseudo active site groove of SHH and directly coordinates its Zn2+ cation. Notably, sequence comparisons of this SHH binding loop with the Hh receptor Patched (Ptc1) ectodomains and HHIP- and PTC1-peptide binding studies suggest a 'patch for Patched' at the Shh pseudo active site; thus, we propose a role for Hhip as a structural decoy receptor for vertebrate Hh.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the Hhip ECD minimal region required for Hh pathway inhibition.
Figure 2: Structure and function of the HHIP–SHH complex.
Figure 3: Shh binding sites and the presence of an 'L2-like loop' in PTC1.
Figure 4: HHIP and PTC1 competitively bind at the SHH pseudo active site groove.
Figure 5: Proposed model of Hhip regulation of the Shh signaling pathway.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Ingham, P.W. & McMahon, A.P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087 (2001).

    Article  CAS  Google Scholar 

  2. Jiang, J. & Hui, C.C. Hedgehog signaling in development and cancer. Dev. Cell 15, 801–812 (2008).

    Article  CAS  Google Scholar 

  3. Beachy, P.A., Karhadkar, S.S. & Berman, D.M. Tissue repair and stem cell renewal in carcinogenesis. Nature 432, 324–331 (2004).

    Article  CAS  Google Scholar 

  4. Scales, S.J. & de Sauvage, F.J. Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol. Sci. 30, 303–312 (2009).

    Article  CAS  Google Scholar 

  5. Lee, J.J. et al. Autoproteolysis in hedgehog protein biogenesis. Science 266, 1528–1537 (1994).

    Article  CAS  Google Scholar 

  6. Porter, J.A. et al. The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature 374, 363–366 (1995).

    Article  CAS  Google Scholar 

  7. Porter, J.A. et al. Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 86, 21–34 (1996).

    Article  CAS  Google Scholar 

  8. Porter, J.A., Young, K.E. & Beachy, P.A. Cholesterol modification of hedgehog signaling proteins in animal development. Science 274, 255–259 (1996).

    Article  CAS  Google Scholar 

  9. Pepinsky, R.B. et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037–14045 (1998).

    Article  CAS  Google Scholar 

  10. Fuse, N. et al. Sonic hedgehog protein signals not as a hydrolytic enzyme but as an apparent ligand for Patched. Proc. Natl. Acad. Sci. USA 96, 10992–10999 (1999).

    Article  CAS  Google Scholar 

  11. Chen, Y. & Struhl, G. Dual roles for patched in sequestering and transducing Hedgehog. Cell 87, 553–563 (1996).

    Article  CAS  Google Scholar 

  12. Marigo, V., Davey, R.A., Zuo, Y., Cunningham, J.M. & Tabin, C.J. Biochemical evidence that Patched is the Hedgehog receptor. Nature 384, 176–179 (1996).

    Article  CAS  Google Scholar 

  13. Stone, D.M. et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129–134 (1996).

    Article  CAS  Google Scholar 

  14. Rohatgi, R. & Scott, M.P. Patching the gaps in Hedgehog signalling. Nat. Cell Biol. 9, 1005–1009 (2007).

    Article  CAS  Google Scholar 

  15. Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045 (2003).

    Article  CAS  Google Scholar 

  16. Yao, S., Lum, L. & Beachy, P. The Ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell 125, 343–357 (2006).

    Article  CAS  Google Scholar 

  17. Kang, J.S. et al. CDO: an oncogene-, serum-, and anchorage-regulated member of the Ig/fibronectin type III repeat family. J. Cell Biol. 138, 203–213 (1997).

    Article  CAS  Google Scholar 

  18. Zhang, W., Kang, J.S., Cole, F., Yi, M.J. & Krauss, R.S. Cdo functions at multiple points in the Sonic Hedgehog pathway, and Cdo-deficient mice accurately model human holoprosencephaly. Dev. Cell 10, 657–665 (2006).

    Article  CAS  Google Scholar 

  19. Kang, J.S., Mulieri, P.J., Hu, Y., Taliana, L. & Krauss, R.S. BOC, an Ig superfamily member, associates with CDO to positively regulate myogenic differentiation. EMBO J. 21, 114–124 (2002).

    Article  CAS  Google Scholar 

  20. Tenzen, T. et al. The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev. Cell 10, 647–656 (2006).

    Article  CAS  Google Scholar 

  21. Allen, B.L., Tenzen, T. & McMahon, A.P. The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev. 21, 1244–1257 (2007).

    Article  CAS  Google Scholar 

  22. McLellan, J.S. et al. Structure of a heparin-dependent complex of Hedgehog and Ihog. Proc. Natl. Acad. Sci. USA 103, 17208–17213 (2006).

    Article  CAS  Google Scholar 

  23. McLellan, J.S. et al. The mode of Hedgehog binding to Ihog homologues is not conserved across different phyla. Nature 455, 979–983 (2008).

    Article  CAS  Google Scholar 

  24. Chuang, P.T. & McMahon, A.P. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397, 617–621 (1999).

    Article  CAS  Google Scholar 

  25. Chuang, P.T., Kawcak, T. & McMahon, A.P. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes Dev. 17, 342–347 (2003).

    Article  CAS  Google Scholar 

  26. Olsen, C.L., Hsu, P.P., Glienke, J., Rubanyi, G.M. & Brooks, A.R. Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors. BMC Cancer 4, 43 (2004).

    Article  Google Scholar 

  27. Pathi, S. et al. Comparative biological responses to human Sonic, Indian, and Desert hedgehog. Mech. Dev. 106, 107–117 (2001).

    Article  CAS  Google Scholar 

  28. Frank-Kamenetsky, M. et al. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J. Biol. 1, 10 (2002).

    Article  Google Scholar 

  29. Yauch, R.L. et al. A paracrine requirement for hedgehog signalling in cancer. Nature 455, 406–410 (2008).

    Article  CAS  Google Scholar 

  30. Jeon, H. et al. Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair. Nat. Struct. Biol. 8, 499–504 (2001).

    Article  CAS  Google Scholar 

  31. Oubrie, A. Structure and mechanism of soluble glucose dehydrogenase and other PQQ-dependent enzymes. Biochim. Biophys. Acta 1647, 143–151 (2003).

    Article  CAS  Google Scholar 

  32. Southall, S.M., Doel, J.J., Richardson, D.J. & Oubrie, A. Soluble aldose sugar dehydrogenase from Escherichia coli: a highly exposed active site conferring broad substrate specificity. J. Biol. Chem. 281, 30650–30659 (2006).

    Article  CAS  Google Scholar 

  33. Oubrie, A., Rozeboom, H.J. & Dijkstra, B.W. Active-site structure of the soluble quinoprotein glucose dehydrogenase complexed with methylhydrazine: a covalent cofactor-inhibitor complex. Proc. Natl. Acad. Sci. USA 96, 11787–11791 (1999).

    Article  CAS  Google Scholar 

  34. Hall, T.M., Porter, J.A., Beachy, P.A. & Leahy, D.J. A potential catalytic site revealed by the 1.7-Å crystal structure of the amino-terminal signalling domain of Sonic hedgehog. Nature 378, 212–216 (1995).

    Article  CAS  Google Scholar 

  35. Briscoe, J., Chen, Y., Jessell, T.M. & Struhl, G. A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol. Cell 7, 1279–1291 (2001).

    Article  CAS  Google Scholar 

  36. Taipale, J., Cooper, M.K., Maiti, T. & Beachy, P.A. Patched acts catalytically to suppress the activity of Smoothened. Nature 418, 892–897 (2002).

    Article  CAS  Google Scholar 

  37. Ericson, J., Morton, S., Kawakami, A., Roelink, H. & Jessell, T.M. Two critical periods of Sonic hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673 (1996).

    Article  CAS  Google Scholar 

  38. Rawlings, N.D., Morton, F.R., Kok, C.Y., Kong, J. & Barrett, A.J. MEROPS: the peptidase database. Nucleic Acids Res. 36, D320–D325 (2008).

    Article  CAS  Google Scholar 

  39. Bochtler, M., Odintsov, S.G., Marcyjaniak, M. & Sabala, I. Similar active sites in lysostaphins and D-Ala-D-Ala metallopeptidases. Protein Sci. 13, 854–861 (2004).

    Article  CAS  Google Scholar 

  40. Bussiere, D.E. et al. The structure of VanX reveals a novel amino-dipeptidase involved in mediating transposon-based vancomycin resistance. Mol. Cell 2, 75–84 (1998).

    Article  CAS  Google Scholar 

  41. Gomis-Rüth, F.X. et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 389, 77–81 (1997).

    Article  Google Scholar 

  42. Stamos, J., Lazarus, R.A., Yao, X., Kirchhofer, D. & Wiesmann, C. Crystal structure of the HGF β-chain in complex with the Sema domain of the Met receptor. EMBO J. 23, 2325–2335 (2004).

    Article  CAS  Google Scholar 

  43. Kirchhofer, D. et al. Structural and functional basis of the serine protease-like hepatocyte growth factor β-chain in Met binding and signaling. J. Biol. Chem. 279, 39915–39924 (2004).

    Article  CAS  Google Scholar 

  44. Kawahira, H. et al. Combined activities of hedgehog signaling inhibitors regulate pancreas development. Development 130, 4871–4879 (2003).

    Article  CAS  Google Scholar 

  45. Dubourg, C. et al. Molecular screening of SHH, ZIC2, SIX3, and TGIF genes in patients with features of holoprosencephaly spectrum: mutation review and genotype-phenotype correlations. Hum. Mutat. 24, 43–51 (2004).

    Article  CAS  Google Scholar 

  46. Gao, B. et al. Mutations in IHH, encoding Indian hedgehog, cause brachydactyly type A-1. Nat. Genet. 28, 386–388 (2001).

    Article  CAS  Google Scholar 

  47. McCready, M.E. et al. A novel mutation in the IHH gene causes brachydactyly type A1: a 95-year-old mystery resolved. Hum. Genet. 111, 368–375 (2002).

    Article  CAS  Google Scholar 

  48. Kirkpatrick, T.J. et al. Identification of a mutation in the Indian Hedgehog (IHH) gene causing brachydactyly type A1 and evidence for a third locus. J. Med. Genet. 40, 42–44 (2003).

    Article  CAS  Google Scholar 

  49. Gao, B. & He, L. Answering a century old riddle: Brachydactyly type A1. Cell Res. 14, 179–187 (2004).

    Article  CAS  Google Scholar 

  50. Liu, M. et al. A novel heterozygous mutation in the Indian hedgehog gene (IHH) is associated with brachydactyly type A1 in a Chinese family. J. Hum. Genet. 51, 727–731 (2006).

    Article  CAS  Google Scholar 

  51. Gao, B. et al. A mutation in Ihh that causes digit abnormalities alters its signalling capacity and range. Nature 458, 1196–1200 (2009).

    Article  CAS  Google Scholar 

  52. Byrnes, A.M. et al. Brachydactyly A-1 mutations restricted to the central region of the N-terminal active fragment of Indian hedgehog. Eur. J. Hum. Genet. published online, doi:10.1038/ejhg.2009.18 (11 March 2009).

    Article  Google Scholar 

  53. St-Jacques, B., Hammerschmidt, M. & McMahon, A.P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13, 2072–2086 (1999).

    Article  CAS  Google Scholar 

  54. Kiselyov, A.S., Tkachenko, S.E., Balakin, K.V. & Ivachtchenko, A.V. Small-molecule modulators of Hh and Wnt signaling pathways. Expert Opin. Ther. Targets 11, 1087–1101 (2007).

    Article  CAS  Google Scholar 

  55. Stanton, B.Z. et al. A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat. Chem. Biol. 5, 154–156 (2009).

    Article  CAS  Google Scholar 

  56. Pepinsky, R.B. et al. Mapping sonic hedgehog-receptor interactions by steric interference. J. Biol. Chem. 275, 10995–11001 (2000).

    Article  CAS  Google Scholar 

  57. Carpenter, D. et al. Characterization of two Patched receptors for the vertebrate Hedgehog protein family. Proc. Natl. Acad. Sci. USA 95, 13630–13634 (1998).

    Article  CAS  Google Scholar 

  58. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  59. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr. 59, 2023–2030 (2003).

    Article  CAS  Google Scholar 

  60. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  61. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  62. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr. 57, 122–133 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues H. Tian, T. Tang, F. Rousseau, C. Noguère, A. Esteves and C. Quan for reagents and technical advice; D. Arnott and E. Drake for 5E1 mapping and affinities; A. Spura and D. Dayne at ForteBio for their support; S. Fakra at the Advanced Light Source (ALS) for her assistance with calcium identification; and our collaborators at Curis, Inc. for S12 cells. Stanford Synchrotron Radiation Laboratory (SSRL), ALS and the Berkeley Center for Structural Biology are supported by the US Department of Energy, National Institutes of Health and the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

I.B. performed structural biology; H.R.M. expressed and purified proteins and performed biochemical assays; S.J.S. and X.W. performed cell-based assays; A.L. contributed to NMR experiments; J.F.B. carried out computational analysis of the Hhip ECD; I.B., H.R.M., S.J.S., A.L., J.F.B., F.J.d.S., S.G.H. and R.A.L. analyzed data and wrote the manuscript. All authors are employees of Genentech, Inc.

Corresponding authors

Correspondence to Frederic J de Sauvage, Sarah G Hymowitz or Robert A Lazarus.

Ethics declarations

Competing interests

All authors are employees of Genentech, Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1 and Supplementary Methods (PDF 1223 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosanac, I., Maun, H., Scales, S. et al. The structure of SHH in complex with HHIP reveals a recognition role for the Shh pseudo active site in signaling. Nat Struct Mol Biol 16, 691–697 (2009). https://doi.org/10.1038/nsmb.1632

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1632

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing