Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA

Abstract

Box H/ACA small nucleolar and Cajal body ribonucleoprotein particles comprise the most complex pseudouridine synthases and are essential for ribosome and spliceosome maturation. The multistep and multicomponent-mediated enzyme mechanism remains only partially understood. Here we report a crystal structure at 2.35 Å of a substrate-bound functional archaeal enzyme containing three of the four proteins, Cbf5, Nop10 and L7Ae, and a box H/ACA RNA that reveals detailed information about the protein-only active site. The substrate RNA, containing 5-fluorouridine at the modification position, is fully docked and catalytically rearranged by the enzyme in a manner similar to that seen in two stand-alone pseudouridine synthases. Structural analysis provides a mechanism for plasticity in the diversity of guide RNA sequences used and identifies a substrate-anchoring loop of Cbf5 that also interacts with Gar1 in unliganded structures. Activity analyses of mutated proteins and RNAs support the structural findings and further suggest a role of the Cbf5 loop in regulation of enzyme activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the structure.
Figure 2: Comparison of active site structure.
Figure 3: Interactions of the RNA with Cbf5.
Figure 4: Structural features of the wild-type ψ-pocket important for substrate docking examined by fluorescence analysis.
Figure 5: Structure and activity analysis of variously assembled wild-type and mutant RNPs reveal mechanisms for plasticity and the sensitivity of β7_β10 loop to substrate and Gar1 binding.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Maden, B.E. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 39, 241–303 (1990).

    Article  CAS  Google Scholar 

  2. Limbach, P.A., Crain, P.F. & McCloskey, J.A. Summary: the modified nucleosides of RNA. Nucleic Acids Res. 22, 2183–2196 (1994).

    Article  CAS  Google Scholar 

  3. Grosjean, H. & Benne, R. Modification and editing of RNA (ASM, Washington, DC, 1998).

  4. Charette, M. & Gray, M.W. Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49, 341–351 (2000).

    Article  CAS  Google Scholar 

  5. Ofengand, J. Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett. 514, 17–25 (2002).

    Article  CAS  Google Scholar 

  6. Koonin, E.V. Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res. 24, 2411–2415 (1996).

    Article  CAS  Google Scholar 

  7. Kaya, Y. & Ofengand, J. A novel unanticipated type of pseudouridine synthase with homologs in bacteria, archaea, and eukarya. RNA 9, 711–721 (2003).

    Article  CAS  Google Scholar 

  8. Decatur, W.A. & Fournier, M.J. RNA-guided nucleotide modification of ribosomal and other RNAs. J. Biol. Chem. 278, 695–698 (2003).

    Article  CAS  Google Scholar 

  9. Ganot, P., Bortolin, M.L. & Kiss, T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89, 799–809 (1997).

    Article  CAS  Google Scholar 

  10. Meier, U.T. The many facets of H/ACA ribonucleoproteins. Chromosoma 114, 1–14 (2005).

    Article  CAS  Google Scholar 

  11. Yu, Y.T., Terns, R.M. & Terns, M.P. Fine-tuning of RNA functions by modification and editing. in Topics in Current Genetics (ed. Grosjean, H.) 223–262 (Springer, New York, USA, 2005).

    Google Scholar 

  12. Balakin, A.G., Smith, L. & Fournier, M.J. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86, 823–834 (1996).

    Article  CAS  Google Scholar 

  13. Ganot, P., Caizergues-Ferrer, M. & Kiss, T. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11, 941–956 (1997).

    Article  CAS  Google Scholar 

  14. Watkins, N.J. et al. Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4, 1549–1568 (1998).

    Article  CAS  Google Scholar 

  15. Henras, A. et al. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J. 17, 7078–7090 (1998).

    Article  CAS  Google Scholar 

  16. Lafontaine, D.L., Bousquet, A.C., Henry,Y., Caizergues, F.M. & Tollervey, D. The box H+ ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 12, 527–537 (1998).

    Article  CAS  Google Scholar 

  17. Morrissey, J.P. & Tollervey, D. Yeast snR30 is a small nucleolar RNA required for 18S rRNA synthesis. Mol. Cell. Biol. 13, 2469–2477 (1993).

    Article  CAS  Google Scholar 

  18. Eliceiri, G.L. The vertebrate E1/U17 small nucleolar ribonucleoprotein particle. J. Cell. Biochem. 98, 486–495 (2006).

    Article  CAS  Google Scholar 

  19. Mitchell, J.R., Cheng, J. & Collins, K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol. Cell. Biol. 19, 567–576 (1999).

    Article  CAS  Google Scholar 

  20. Collins, K. The biogenesis and regulation of telomerase holoenzymes. Nat. Rev. Mol. Cell Biol. 7, 484–494 (2006).

    Article  CAS  Google Scholar 

  21. Lukowiak, A.A., Narayanan, A., Li, Z.H., Terns, R.M. & Terns, M.P. The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus. RNA 7, 1833–1844 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Heiss, N.S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet. 19, 32–38 (1998).

    Article  CAS  Google Scholar 

  23. Walne, A.J. et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum. Mol. Genet. 16, 1619–1629 (2007).

    Article  CAS  Google Scholar 

  24. Vulliamy, T. et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc. Natl. Acad. Sci. USA 105, 8073–8078 (2008).

    Article  CAS  Google Scholar 

  25. Spedaliere, C.J., Ginter, J.M., Johnston, M.V. & Mueller, E.G. The pseudouridine synthases: revisiting a mechanism that seemed settled. J. Am. Chem. Soc. 126, 12758–12759 (2004).

    Article  CAS  Google Scholar 

  26. Hamma, T. & Ferre-D'Amare, A.R. Pseudouridine synthases. Chem. Biol. 13, 1125–1135 (2006).

    Article  CAS  Google Scholar 

  27. Phannachet, K., Elias, Y. & Huang, R.H. Dissecting the roles of a strictly conserved tyrosine in substrate recognition and catalysis by pseudouridine 55 synthase. Biochemistry 44, 15488–15494 (2005).

    Article  CAS  Google Scholar 

  28. Roovers, M. et al. Formation of the conserved pseudouridine at position 55 in archaeal tRNA. Nucleic Acids Res. 34, 4293–4301 (2006).

    Article  CAS  Google Scholar 

  29. Schattner, P. et al. Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. Nucleic Acids Res. 32, 4281–4296 (2004).

    Article  CAS  Google Scholar 

  30. Decatur, W.A. & Fournier, M.J. rRNA modifications and ribosome function. Trends Biochem. Sci. 27, 344–351 (2002).

    Article  CAS  Google Scholar 

  31. Baker, D.L. et al. RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP. Genes Dev. 19, 1238–1248 (2005).

    Article  CAS  Google Scholar 

  32. Wang, C. & Meier, U.T. Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J. 23, 1857–1867 (2004).

    Article  CAS  Google Scholar 

  33. Charpentier, B., Muller, S. & Branlant, C. Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation. Nucleic Acids Res. 33, 3133–3144 (2005).

    Article  CAS  Google Scholar 

  34. Li, L. & Ye, K. Crystal structure of an H/ACA box ribonucleoprotein particle. Nature 443, 302–307 (2006).

    Article  CAS  Google Scholar 

  35. Li, H. Unveiling substrate RNA binding to H/ACA RNPs: one side fits all. Curr. Opin. Struct. Biol. 18, 78–85 (2008).

    Article  Google Scholar 

  36. Liang, B., Xue, S., Terns, R.M., Terns, M.P. & Li, H. Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex. Nat. Struct. Mol. Biol. 14, 1189–1195 (2007).

    Article  CAS  Google Scholar 

  37. Rashid, R. et al. Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita. Mol. Cell 21, 249–260 (2006).

    Article  CAS  Google Scholar 

  38. Ye, K. H/ACA guide RNAs, proteins and complexes. Curr. Opin. Struct. Biol. 17, 287–292 (2007).

    Article  CAS  Google Scholar 

  39. Hamma, T., Reichow, S.L., Varani, G. & Ferre-D'Amare, A.R. The Cbf5-Nop10 complex is a molecular bracket that organizes box H/ACA RNPs. Nat. Struct. Mol. Biol. 12, 1101–1107 (2005).

    Article  CAS  Google Scholar 

  40. Manival, X. et al. Crystal structure determination and site-directed mutagenesis of the Pyrococcus abyssi aCBF5-aNOP10 complex reveal crucial roles of the C-terminal domains of both proteins in H/ACA sRNP activity. Nucleic Acids Res. 34, 826–839 (2006).

    Article  CAS  Google Scholar 

  41. Liang, B. et al. Long-distance placement of substrate RNA by H/ACA proteins. RNA 14, 2086–2094 (2008).

    Article  CAS  Google Scholar 

  42. Klein, R.J., Misulovin, Z. & Eddy, S.R. Noncoding RNA genes identified in AT-rich hyperthermophiles. Proc. Natl. Acad. Sci. USA 99, 7542–7547 (2002).

    Article  CAS  Google Scholar 

  43. Rozhdestvensky, T.S. et al. Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea. Nucleic Acids Res. 31, 869–877 (2003).

    Article  CAS  Google Scholar 

  44. Wu, H. & Feigon, J. H/ACA small nucleolar RNA pseudouridylation pockets bind substrate RNA to form three-way junctions that position the target U for modification. Proc. Natl. Acad. Sci. USA 104, 6655–6660 (2007).

    Article  CAS  Google Scholar 

  45. Jin, H., Loria, J.P. & Moore, P.B. Solution structure of an rRNA substrate bound to the pseudouridylation pocket of a box H/ACA snoRNA. Mol. Cell 26, 205–215 (2007).

    Article  CAS  Google Scholar 

  46. Hoang, C. & Ferre-D'Amare, A.R. Cocrystal structure of a tRNA Psi55 pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Cell 107, 929–939 (2001).

    Article  CAS  Google Scholar 

  47. Spedaliere, C.J. & Mueller, E.G. Not all pseudouridine synthases are potently inhibited by RNA containing 5-fluorouridine. RNA 10, 192–199 (2004).

    Article  CAS  Google Scholar 

  48. Hoang, C. et al. Crystal structure of pseudouridine synthase RluA: indirect sequence readout through protein-induced RNA structure. Mol. Cell 24, 535–545 (2006).

    Article  CAS  Google Scholar 

  49. Baker, D.L. et al. Determination of protein-rna interaction sites in the Cbf5-H/ACA Guide RNA complex by mass spectrometric protein footprinting. Biochemistry 47, 1500–1510 (2008).

    Article  CAS  Google Scholar 

  50. Muller, S., Fourmann, J.B., Loegler, C., Charpentier, B. & Branlant, C. Identification of determinants in the protein partners aCBF5 and aNOP10 necessary for the tRNA:{Psi}55-synthase and RNA-guided RNA:{Psi}-synthase activities. Nucleic Acids Res. 35, 5610–5624 (2007).

    Article  CAS  Google Scholar 

  51. Darzacq, X. et al. Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J. Cell Biol. 173, 207–218 (2006).

    Article  CAS  Google Scholar 

  52. McKenna, S.A. et al. Purification and characterization of transcribed RNAs using gel filtration chromatography. Nat. Protocols 2, 3270–3277 (2007).

    Article  CAS  Google Scholar 

  53. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  54. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  55. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  56. Murshudov, G.N., Vagin, A.A., Lebedev, A., Wilson, K.S. & Dodson, E.J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D Biol. Crystallogr. 55, 247–255 (1999).

    Article  CAS  Google Scholar 

  57. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  58. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  59. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr. 57, 122–133 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US National Institutes of Health grants R01 GM66958-01 (H.L.) and R01 GM54682 (M.T. and R.T.). B.L. (0815118E) and J.Z. (0815267E) are supported by the American Heart Association, Greater Southeast Affiliate. X-ray diffraction data were collected by the Southeast Regional Collaborative Access Team (SER-CAT) 22-ID beamline at the Advanced Photon Source (APS), Argonne National Laboratory. Supporting institutions for APS beamlines may be found at http://necat.chem.cornell.edu and http://www.ser-cat.org/members.html. Use of the APS was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38.

Author information

Authors and Affiliations

Authors

Contributions

B.L. determined the crystal structure; J.Z. prepared samples; E.K. performed fluorescence assays; M.P.T. and R.M.T. prepared the manuscript; H.L. supervised the project and prepared the manuscript.

Corresponding author

Correspondence to Hong Li.

Supplementary information

Supplementary Figures and Tables

Supplementary Tables 1 and 2 and Supplementary Figures 1 and 2 (PDF 1194 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, B., Zhou, J., Kahen, E. et al. Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA. Nat Struct Mol Biol 16, 740–746 (2009). https://doi.org/10.1038/nsmb.1624

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1624

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing