Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling

Abstract

Characterizing the structural dynamics of the translating ribosome remains a major goal in the study of protein synthesis. Deacylation of peptidyl-tRNA during translation elongation triggers fluctuations of the pretranslocation ribosomal complex between two global conformational states. Elongation factor G–mediated control of the resulting dynamic conformational equilibrium helps to coordinate ribosome and tRNA movements during elongation and is thus a crucial mechanistic feature of translation. Beyond elongation, deacylation of peptidyl-tRNA also occurs during translation termination, and this deacylated tRNA persists during ribosome recycling. Here we report that specific regulation of the analogous conformational equilibrium by translation release and ribosome recycling factors has a critical role in the termination and recycling mechanisms. Our results support the view that specific regulation of the global state of the ribosome is a fundamental characteristic of all translation factors and a unifying theme throughout protein synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental model and reaction schemes for termination and recycling.
Figure 2: RF1 binds stably to a release complex and prevents tRNA fluctuations.
Figure 3: RF1 blocks GS1 → GS2 transitions and stabilizes GS1.
Figure 4: RF1 domain 1 is dispensable for RF1-mediated blocking of GS1 → GS2 transitions.
Figure 5: RF3(GDP) interacts with an RF1-bound RC locked in GS1, and binding of GTP to RC-bound RF3 enables the GS1 → GS2 transition.
Figure 6: RRF preferentially binds GS2 and competes with GS2 → GS1 transitions within a fluctuating post-termination complex.
Figure 7: Mechanistic model for regulation of the GS1GS2 dynamic equilibrium by RF1, RF3 and RRF.

Similar content being viewed by others

References

  1. Frank, J. & Agrawal, R.K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322 (2000).

    Article  CAS  Google Scholar 

  2. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    Article  CAS  Google Scholar 

  3. Gao, N. et al. Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies. Mol. Cell 18, 663–674 (2005).

    Article  CAS  Google Scholar 

  4. Gao, H. et al. RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors. Cell 129, 929–941 (2007).

    Article  CAS  Google Scholar 

  5. Connell, S.R. et al. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol. Cell 25, 751–764 (2007).

    Article  CAS  Google Scholar 

  6. Agirrezabala, X. et al. Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Mol. Cell 32, 190–197 (2008).

    Article  CAS  Google Scholar 

  7. Julián, P. et al. Structure of ratcheted ribosomes with tRNAs in hybrid states. Proc. Natl. Acad. Sci. USA 105, 16924–16927 (2008).

    Article  Google Scholar 

  8. Fei, J., Kosuri, P., MacDougall, D.D. & Gonzalez, R.L. Jr. Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol. Cell 30, 348–359 (2008).

    Article  CAS  Google Scholar 

  9. Ermolenko, D.N. et al. Observation of intersubunit movement of the ribosome in solution using FRET. J. Mol. Biol. 370, 530–540 (2007).

    Article  CAS  Google Scholar 

  10. Cornish, P.V., Ermolenko, D.N., Noller, H.F. & Ha, T. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30, 578–588 (2008).

    Article  CAS  Google Scholar 

  11. Cornish, P.V. et al. Following movement of the L1 stalk between three functional states in single ribosomes. Proc. Natl. Acad. Sci. USA 106, 2571–2576 (2009).

    Article  CAS  Google Scholar 

  12. Traut, R.R. & Monro, R.E. The puromycin reaction and its relation to protein synthesis. J. Mol. Biol. 10, 63–72 (1964).

    Article  CAS  Google Scholar 

  13. Freistroffer, D.V., Pavlov, M.Y., MacDougall, J., Buckingham, R.H. & Ehrenberg, M. Release factor RF3 in E. coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J. 16, 4126–4133 (1997).

    Article  CAS  Google Scholar 

  14. Zavialov, A.V., Buckingham, R.H. & Ehrenberg, M. A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell 107, 115–124 (2001).

    Article  CAS  Google Scholar 

  15. Hirokawa, G. et al. The role of ribosome recycling factor in dissociation of 70S ribosomes into subunits. RNA 11, 1317–1328 (2005).

    Article  CAS  Google Scholar 

  16. Zavialov, A.V., Hauryliuk, V.V. & Ehrenberg, M. Splitting of the posttermination ribosome into subunits by the concerted action of RRF and EF-G. Mol. Cell 18, 675–686 (2005).

    Article  CAS  Google Scholar 

  17. Peske, F., Rodnina, M.V. & Wintermeyer, W. Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol. Cell 18, 403–412 (2005).

    Article  CAS  Google Scholar 

  18. Rawat, U. et al. Interactions of the release factor RF1 with the ribosome as revealed by cryo-EM. J. Mol. Biol. 357, 1144–1153 (2006).

    Article  CAS  Google Scholar 

  19. Klaholz, B.P., Myasnikov, A.G. & Van Heel, M. Visualization of release factor 3 on the ribosome during termination of protein synthesis. Nature 427, 862–865 (2004).

    Article  CAS  Google Scholar 

  20. Barat, C. et al. Progression of the ribosome recycling factor through the ribosome dissociates the two ribosomal subunits. Mol. Cell 27, 250–261 (2007).

    Article  CAS  Google Scholar 

  21. Wilson, K.S., Ito, K., Noller, H.F. & Nakamura, Y. Functional sites of interaction between release factor RF1 and the ribosome. Nat. Struct. Biol. 7, 866–870 (2000).

    Article  CAS  Google Scholar 

  22. Bastiaens, P.I. & Jovin, T.M. Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: fluorescent-labeled protein kinase C beta I. Proc. Natl. Acad. Sci. USA 93, 8407–8412 (1996).

    Article  CAS  Google Scholar 

  23. Hohng, S., Joo, C. & Ha, T. Single-molecule three-color FRET. Biophys. J. 87, 1328–1337 (2004).

    Article  CAS  Google Scholar 

  24. Laurberg, M. et al. Structural basis for translation termination on the 70S ribosome. Nature 454, 852–857 (2008).

    Article  CAS  Google Scholar 

  25. Zavialov, A.V., Mora, L., Buckingham, R.H. & Ehrenberg, M. Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Mol. Cell 10, 789–798 (2002).

    Article  CAS  Google Scholar 

  26. Blanchard, S.C., Kim, H.D., Gonzalez, R.L. Jr, Puglisi, J.D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 101, 12893–12898 (2004).

    Article  CAS  Google Scholar 

  27. Kim, H.D., Puglisi, J.D. & Chu, S. Fluctuations of transfer RNAs between classical and hybrid states. Biophys. J. 93, 3575–3582 (2007).

    Article  CAS  Google Scholar 

  28. Munro, J.B., Altman, R.B., O'Connor, N. & Blanchard, S.C. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell 25, 505–517 (2007).

    Article  CAS  Google Scholar 

  29. Bartley, L.E., Zhuang, X., Das, R., Chu, S. & Herschlag, D. Exploration of the transition state for tertiary structure formation between an RNA helix and a large structured RNA. J. Mol. Biol. 328, 1011–1026 (2003).

    Article  CAS  Google Scholar 

  30. Petry, S. et al. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123, 1255–1266 (2005).

    Article  CAS  Google Scholar 

  31. Mora, L., Zavialov, A., Ehrenberg, M. & Buckingham, R.H. Stop codon recognition and interactions with peptide release factor RF3 of truncated and chimeric RF1 and RF2 from Escherichia coli. Mol. Microbiol. 50, 1467–1476 (2003).

    Article  CAS  Google Scholar 

  32. Karimi, R., Pavlov, M.Y., Buckingham, R.H. & Ehrenberg, M. Novel roles for classical factors at the interface between translation termination and initiation. Mol. Cell 3, 601–609 (1999).

    Article  CAS  Google Scholar 

  33. Sarkar, S.K. et al. Engineered Holliday junctions as single-molecule reporters for protein-DNA interactions with application to a MerR-family regulator. J. Am. Chem. Soc. 129, 12461–12467 (2007).

    Article  CAS  Google Scholar 

  34. Agrawal, R.K. et al. Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implications. Proc. Natl. Acad. Sci. USA 101, 8900–8905 (2004).

    Article  CAS  Google Scholar 

  35. Weixlbaumer, A. et al. Crystal structure of the ribosome recycling factor bound to the ribosome. Nat. Struct. Mol. Biol. 14, 733–737 (2007).

    Article  CAS  Google Scholar 

  36. Borovinskaya, M.A. et al. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat. Struct. Mol. Biol. 14, 727–732 (2007).

    Article  CAS  Google Scholar 

  37. Lancaster, L., Kiel, M.C., Kaji, A. & Noller, H.F. Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing. Cell 111, 129–140 (2002).

    Article  CAS  Google Scholar 

  38. Hirokawa, G. et al. Binding of ribosome recycling factor to ribosomes, comparison with tRNA. J. Biol. Chem. 277, 35847–35852 (2002).

    Article  CAS  Google Scholar 

  39. Kiel, M.C., Raj, V.S., Kaji, H. & Kaji, A. Release of ribosome-bound ribosome recycling factor by elongation factor G. J. Biol. Chem. 278, 48041–48050 (2003).

    Article  CAS  Google Scholar 

  40. Seo, H.S. et al. Kinetics and thermodynamics of RRF, EF-G, and thiostrepton interaction on the Escherichia coli ribosome. Biochemistry 43, 12728–12740 (2004).

    Article  CAS  Google Scholar 

  41. Pavlov, M.Y., Antoun, A., Lovmar, M. & Ehrenberg, M. Complementary roles of initiation factor 1 and ribosome recycling factor in 70S ribosome splitting. EMBO J. 27, 1706–1717 (2008).

    Article  CAS  Google Scholar 

  42. Janosi, L. et al. Evidence for in vivo ribosome recycling, the fourth step in protein biosynthesis. EMBO J. 17, 1141–1151 (1998).

    Article  CAS  Google Scholar 

  43. Hirokawa, G., Inokuchi, H., Kaji, H., Igarashi, K. & Kaji, A. In vivo effect of inactivation of ribosome recycling factor—fate of ribosomes after unscheduled translation downstream of open reading frame. Mol. Microbiol. 54, 1011–1021 (2004).

    Article  CAS  Google Scholar 

  44. Zavialov, A.V. & Ehrenberg, M. Peptidyl-tRNA regulates the GTPase activity of translation factors. Cell 114, 113–122 (2003).

    Article  CAS  Google Scholar 

  45. Spahn, C.M. et al. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23, 1008–1019 (2004).

    Article  CAS  Google Scholar 

  46. Taylor, D.J. et al. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J. 26, 2421–2431 (2007).

    Article  CAS  Google Scholar 

  47. Dinçbas-Renqvist, V. et al. A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J. 19, 6900–6907 (2000).

    Article  Google Scholar 

  48. Heurgué-Hamard, V., Champ, S., Engstrom, A., Ehrenberg, M. & Buckingham, R.H. The hemK gene in Escherichia coli encodes the N5-glutamine methyltransferase that modifies peptide release factors. EMBO J. 21, 769–778 (2002).

    Article  Google Scholar 

  49. Gonzalez, R.L., Jr, Chu, S. & Puglisi, J.D. Thiostrepton inhibition of tRNA delivery to the ribosome. RNA 13, 2091–2097 (2007).

    Article  CAS  Google Scholar 

  50. McKinney, S.A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by start-up funds to R.L.G. from Columbia University, as well as grants to R.L.G. from the Burroughs Wellcome Fund (CABS 1004856), the US National Science Foundation (MCB 0644262) and the American Cancer Society (RSG GMC-117152). S.H.S. was supported, in part, by the Columbia University Langmuir Scholars Program, and N.P. was supported, in part, by the Columbia University Summer Undergraduate Research Fellowship (SURF) Program. We are indebted to S. Das for managing the Gonzalez laboratory. We thank J. Frank, E. Greene, N. Gao and the members of the Gonzalez laboratory for valuable discussions and for carefully reading the manuscript and providing comments.

Author information

Authors and Affiliations

Authors

Contributions

S.H.S. and R.L.G. designed the research; S.H.S. conducted the research, except for the release factor activity assays, which were conducted by S.H.S, N.P. and K.A.M., and purification of RRF, which was conducted by N.P.; J.F. provided L1(Cy5) ribosomes and offered critical discussions related to data analysis and interpretation; S.H.S. and R.L.G. wrote the manuscript; all authors approved the final manuscript.

Corresponding author

Correspondence to Ruben L Gonzalez Jr.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Methods (PDF 2041 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sternberg, S., Fei, J., Prywes, N. et al. Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Nat Struct Mol Biol 16, 861–868 (2009). https://doi.org/10.1038/nsmb.1622

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1622

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing