Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout

A Corrigendum to this article was published on 01 August 2009

This article has been updated

Abstract

Type III secretion systems (T3SSs) mediate bacterial protein translocation into eukaryotic cells, a process essential for virulence of many Gram-negative pathogens. They are composed of a cytoplasmic secretion machinery and a base that bridges both bacterial membranes, into which a hollow, external needle is embedded. When isolated, the latter two parts are termed the 'needle complex'. An incomplete understanding of the structure of the needle complex has hampered studies of T3SS function. To estimate the stoichiometry of its components, we measured the mass of its subdomains by scanning transmission electron microscopy (STEM). We determined subunit symmetries by analysis of top and side views within negatively stained samples in low-dose transmission electron microscopy (TEM). Application of 12-fold symmetry allowed generation of a 21–25-Å resolution, three-dimensional reconstruction of the needle complex base, revealing many new features and permitting tentative docking of the crystal structure of EscJ, an inner membrane component.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shigella flexneri needle complexes.
Figure 2: STEM data collection and analysis.
Figure 3: Image analysis of top views of the needle complex base.
Figure 4: Classification of needle complex side views.
Figure 5: Three-dimensional reconstruction of needle complexes with C12 symmetry.
Figure 6: Possible fits of crystal structure of EscJ (MxiJ homolog) in the IMR and connector portions of the map.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 18 May 2009

    In the version of this article initially published, the incorrect accession number for EM map deposition was provided. The correct accession number for data deposited in EmDep is EMD-1617. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Blocker, A., Komoriya, K. & Aizawa, S. Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc. Natl. Acad. Sci. USA 100, 3027–3030 (2003).

    Article  CAS  Google Scholar 

  2. Hale, T.L. Bacilliary dysentery. in Topley and Wilson's Microbiology and Microbial Infections Vol. 3 (ed. Hansler, W.J., & Shuman, M.) 479–493 (Arnold, London, 1998).

    Google Scholar 

  3. Cossart, P. & Sansonetti, P.J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004).

    Article  CAS  Google Scholar 

  4. Blocker, A. et al. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147, 683–693 (1999).

    Article  CAS  Google Scholar 

  5. Ghosh, P. Process of protein transport by the type III secretion system. Microbiol. Mol. Biol. Rev. 68, 771–795 (2004).

    Article  CAS  Google Scholar 

  6. Veenendaal, A.K. et al. The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol. Microbiol. 63, 1719–1730 (2007).

    Article  CAS  Google Scholar 

  7. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998).

    Article  CAS  Google Scholar 

  8. Blocker, A. et al. Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Mol. Microbiol. 39, 652–663 (2001).

    Article  CAS  Google Scholar 

  9. Cordes, F.S. et al. Helical structure of the needle of the type III secretion system of Shigella flexneri. J. Biol. Chem. 278, 17103–17107 (2003).

    Article  CAS  Google Scholar 

  10. Deane, J.E. et al. Molecular model of a type III secretion system needle: implications for host-cell sensing. Proc. Natl. Acad. Sci. USA 103, 12529–12533 (2006).

    Article  CAS  Google Scholar 

  11. Cordes, F.S. et al. Helical packing of needles from functionally altered Shigella type III secretion systems. J. Mol. Biol. 354, 206–211 (2005).

    Article  CAS  Google Scholar 

  12. Johnson, S. et al. Self-chaperoning of the type III secretion system needle tip proteins IpaD and BipD. J. Biol. Chem. 282, 4035–4044 (2007).

    Article  CAS  Google Scholar 

  13. Kenjale, R. et al. The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J. Biol. Chem. 280, 42929–42937 (2005).

    Article  CAS  Google Scholar 

  14. Blocker, A.J. et al. What's the point of the type III secretion system needle? Proc. Natl. Acad. Sci. USA 105, 6507–6513 (2008).

    Article  CAS  Google Scholar 

  15. Kimbrough, T.G. & Miller, S.I. Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc. Natl. Acad. Sci. USA 97, 11008–11013 (2000).

    Article  CAS  Google Scholar 

  16. Tamano, K. et al. Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J. 19, 3876–3887 (2000).

    Article  CAS  Google Scholar 

  17. Allaoui, A. et al. MxiG, a membrane protein required for secretion of Shigella spp. Ipa invasins: involvement in entry into epithelial cells and in intercellular dissemination. Mol. Microbiol. 17, 461–470 (1995).

    Article  CAS  Google Scholar 

  18. Allaoui, A., Sansonetti, P.J. & Parsot, C. MxiJ, a lipoprotein involved in secretion of Shigella Ipa invasins, is homologous to YscJ, a secretion factor of the Yersinia Yop proteins. J. Bacteriol. 174, 7661–7669 (1992).

    Article  CAS  Google Scholar 

  19. Yip, C.K. et al. Structural characterization of the molecular platform for type III secretion system assembly. Nature 435, 702–707 (2005).

    Article  CAS  Google Scholar 

  20. Silva-Herzog, E., Ferracci, F., Jackson, M.W., Joseph, S.S. & Plano, G.V. Membrane localization and topology of the Yersinia pestis YscJ lipoprotein. Microbiology 154, 593–607 (2008).

    Article  CAS  Google Scholar 

  21. Burghout, P. et al. Structure and electrophysiological properties of the YscC secretin from the type III secretion system of Yersinia enterocolitica. J. Bacteriol. 186, 4645–4654 (2004).

    Article  CAS  Google Scholar 

  22. Allaoui, A., Sansonetti, P.J. & Parsot, C. MxiD, an outer membrane protein necessary for the secretion of the Shigella flexneri lpa invasins. Mol. Microbiol. 7, 59–68 (1993).

    Article  CAS  Google Scholar 

  23. Marlovits, T.C. et al. Structural insights into the assembly of the type III secretion needle complex. Science 306, 1040–1042 (2004).

    Article  CAS  Google Scholar 

  24. Sani, M. et al. Structural organization of the needle complex of the type III secretion apparatus of Shigella flexneri. Micron 38, 291–301 (2007).

    Article  CAS  Google Scholar 

  25. Zenk, S.F., Stabat, D., Veenendaal, A.K.J., Johnson, S. & Blocker, A. Identification of minor inner membrane components of the Shigella T3SS “needle complex”. Microbiology 153, 2405–2415 (2007).

    Article  CAS  Google Scholar 

  26. Bayan, N., Guilvout, I. & Pugsley, A.P. Secretins take shape. Mol. Microbiol. 60, 1–4 (2006).

    Article  CAS  Google Scholar 

  27. Kocsis, E., Cerritelli, M.E., Trus, B.L., Cheng, N. & Steven, A.C. Improved methods for determination of rotational symmetries in macromolecules. Ultramicroscopy 60, 219–228 (1995).

    Article  CAS  Google Scholar 

  28. Thomas, D.R., Francis, N.R., Xu, C. & DeRosier, D.J. The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J. Bacteriol. 188, 7039–7048 (2006).

    Article  CAS  Google Scholar 

  29. Chami, M. et al. Structural insights into the secretin PulD and its trypsin-resistant core. J. Biol. Chem. 280, 37732–37741 (2005).

    Article  CAS  Google Scholar 

  30. Opalka, N. et al. Structure of the filamentous phage pIV multimer by cryo-electron microscopy. J. Mol. Biol. 325, 461–470 (2003).

    Article  CAS  Google Scholar 

  31. Collins, R.F., Davidsen, L., Derrick, J.P., Ford, R.C. & Tonjum, T. Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J. Bacteriol. 183, 3825–3832 (2001).

    Article  CAS  Google Scholar 

  32. Collins, R.F. et al. Three-dimensional structure of the Neisseria meningitidis secretin PilQ determined from negative-stain transmission electron microscopy. J. Bacteriol. 185, 2611–2617 (2003).

    Article  CAS  Google Scholar 

  33. Nouwen, N., Stahlberg, H., Pugsley, A.P. & Engel, A. Domain structure of secretin PulD revealed by limited proteolysis and electron microscopy. EMBO J. 19, 2229–2236 (2000).

    Article  CAS  Google Scholar 

  34. Berg, H.C. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54 (2003).

    Article  CAS  Google Scholar 

  35. André, I., Bradley, P., Wang, C. & Baker, D. Prediction of the structure of symmetrical protein assemblies. Proc. Natl. Acad. Sci. USA 104, 17656–17661 (2007).

    Article  Google Scholar 

  36. Kleywegt, G.J. & Jones, T.A. xdlMAPMAN and xdlDATAMAN—programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. Acta Crystallogr. D Biol. Crystallogr. 52, 826–828 (1996).

    Article  CAS  Google Scholar 

  37. Knutton, S. et al. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17, 2166–2176 (1998).

    Article  CAS  Google Scholar 

  38. Macnab, R.M. How bacteria assemble flagella. Annu. Rev. Microbiol. 57, 77–100 (2003).

    Article  CAS  Google Scholar 

  39. Burns, R.E., McDaniel-Craig, A. & Sukhan, A. Site-directed mutagenesis of the Pseudomonas aeruginosa type III secretion system protein PscJ reveals an essential role for surface-localized residues in needle complex function. Microb. Pathog. 45, 225–230 (2008).

    Article  CAS  Google Scholar 

  40. Sosinsky, G.E. et al. Mass determination and estimation of subunit stoichiometry of the bacterial hook-basal body flagellar complex of Salmonella typhimurium by scanning transmission electron microscopy. Proc. Natl. Acad. Sci. USA 89, 4801–4805 (1992).

    Article  CAS  Google Scholar 

  41. Aizawa, S.I. Bacterial flagella and type III secretion systems. FEMS Microbiol. Lett. 202, 157–164 (2001).

    Article  CAS  Google Scholar 

  42. Jones, C.J., Macnab, R.M., Okino, H. & Aizawa, S. Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium. J. Mol. Biol. 212, 377–387 (1990).

    Article  CAS  Google Scholar 

  43. Nouwen, N. et al. Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. Proc. Natl. Acad. Sci. USA 96, 8173–8177 (1999).

    Article  CAS  Google Scholar 

  44. Marlovits, T.C. et al. Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441, 637–640 (2006).

    Article  CAS  Google Scholar 

  45. Claret, L., Calder, S.R., Higgins, M. & Hughes, C. Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly. Mol. Microbiol. 48, 1349–1355 (2003).

    Article  CAS  Google Scholar 

  46. Imada, K., Minamino, T., Tahara, A. & Namba, K. Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Proc. Natl. Acad. Sci. USA 104, 485–490 (2007).

    Article  CAS  Google Scholar 

  47. Minamino, T. et al. Oligomerization of the bacterial flagellar ATPase FliI is controlled by its extreme N-terminal region. J. Mol. Biol. 360, 510–519 (2006).

    Article  CAS  Google Scholar 

  48. Zarivach, R., Vuckovic, M., Deng, W., Finlay, B.B. & Strynadka, N.C. Structural analysis of a prototypical ATPase from the type III secretion system. Nat. Struct. Mol. Biol. 14, 131–137 (2007).

    Article  CAS  Google Scholar 

  49. Wall, J.S., Simon, M.N., Lin, B.Y. & Vinogradov, S.N. Mass mapping of large globin complexes by scanning transmission electron microscopy. Methods Enzymol. 436, 487–501 (2008).

    Article  CAS  Google Scholar 

  50. Crowther, R.A., Henderson, R. & Smith, J.M. MRC image processing programs. J. Struct. Biol. 116, 9–16 (1996).

    Article  CAS  Google Scholar 

  51. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    Article  CAS  Google Scholar 

  52. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  53. Pettersen, E.F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  54. Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 33, 491–497 (1968).

    Article  CAS  Google Scholar 

  55. Vagin, A. & Teplyakov, A. An approach to multi-copy search in molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 56, 1622–1624 (2000).

    Article  CAS  Google Scholar 

  56. Moraes, T.F., Spreter, T. & Strynadka, N.C. Piecing together the type III injectisome of bacterial pathogens. Curr. Opin. Struct. Biol. 18, 258–266 (2008).

    Article  CAS  Google Scholar 

  57. Chami, M. et al. Structural insights into the secretin PulD and its trypsin-resistant core. J. Biol. Chem. 280, 37732–37741 (2005).

    Article  CAS  Google Scholar 

  58. Burghout, P. et al. Structure and electrophysiological properties of the YscC secretin from the type III secretion system of Yersinia enterocolitica. J. Bacteriol. 186, 4645–4654 (2004).

    Article  CAS  Google Scholar 

  59. Opalka, N. et al. Structure of the filamentous phage pIV multimer by cryo-electron microscopy. J. Mol. Biol. 325, 461–470 (2003).

    Article  CAS  Google Scholar 

  60. Collins, R.F., Davidsen, L., Derrick, J.P., Ford, R.C. & Tonjum, T. Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J. Bacteriol. 183, 3825–3832 (2001).

    Article  CAS  Google Scholar 

  61. Korotkov, K.V., Pardon, E., Steyaert, J. & Hol, W.G. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure 17, 255–265 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Lin (Brookhaven) for assistance with STEM sample preparation and P. Roversi (Oxford) for the script to run the program for statistical assessment of docking of atomic structures to EM maps. We are indebted to N. Strynadka and co-workers (British Columbia) for the EscJ ring coordinates and to D. DeRosier (Brandeis) and K. Namba (GSFBS, Osaka) for advice and encouragement at all key stages of this work. They, along with F. Booy (Bristol), S. Daniell (Bristol), A. Veenendaal (Utrecht) and W. Steffen (MHH, Hanover) are also thanked for critical comments on the manuscript. J.L.H. was funded by UK Medical Research Council project grant G0401595 to A.J.B. and Deutsche Forschungsgemeinschaft grant BR 849/29-1 to B. Brenner. A.J.B. was supported by the Guy G. F. Newton Senior Research Fellowship. S.J. was funded by UK Medical Research Council project grant G0400389 to S.M.L. J.S.W.'s laboratory is supported by the US National Institutes of Health and Department of Energy. P.C.A.d.F. and E.P.M. received funding from Cancer Research UK.

Author information

Authors and Affiliations

Authors

Contributions

A.J.B. and J.L.H. designed the research; D.S. and A.J.B. purified the needle complexes; J.L.H. acquired the negative stain images; M.S. acquired the STEM images; J.S.W. adapted the STEM image analysis programme; J.L.H., A.H. and A.J.B. analyzed data; P.C.A.d.F. and E.P.M. provided advice on image analysis; S.J., J.L.H. and S.M.L. performed the EscJ docking; J.L.H. and A.J.B. wrote the paper.

Corresponding author

Correspondence to Ariel J Blocker.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 1337 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodgkinson, J., Horsley, A., Stabat, D. et al. Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout. Nat Struct Mol Biol 16, 477–485 (2009). https://doi.org/10.1038/nsmb.1599

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1599

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing