Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Developmental programming of CpG island methylation profiles in the human genome

Abstract

CpG island–like sequences are commonly thought to provide the sole signals for designating constitutively unmethylated regions in the genome, thus generating open chromatin domains within a sea of global repression. Using a new database obtained from comprehensive microarray analysis, we show that unmethylated regions (UMRs) seem to be formed during early embryogenesis, not as a result of CpG-ness, but rather through the recognition of specific sequence motifs closely associated with transcription start sites. This same system probably brings about the resetting of pluripotency genes during somatic cell reprogramming. The data also reveal a new class of nonpromoter UMRs that become de novo methylated in a tissue-specific manner during development, and this process may be involved in gene regulation. In short, we show that UMRs are an important aspect of genome structure that have a dynamic role in development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of methylation by mDIP microarray analysis.
Figure 2: Methylated and unmethylated islands.
Figure 3: Unmethylated CpG islands have TSSs.
Figure 4: CpG island sequence motifs.
Figure 5: Tissue-specific de novo methylation.

Similar content being viewed by others

References

  1. Kafri, T. et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germline. Genes Dev. 6, 705–714 (1992).

    Article  CAS  Google Scholar 

  2. Monk, M., Boubelik, M. & Lehnert, S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–382 (1987).

    CAS  PubMed  Google Scholar 

  3. Brandeis, M. et al. Sp1 elements protect a CpG island from de novo methylation. Nature 371, 435–438 (1994).

    Article  CAS  Google Scholar 

  4. Frank, D. et al. Demethylation of CpG islands in embryonic cells. Nature 351, 239–241 (1991).

    Article  CAS  Google Scholar 

  5. Macleod, D., Charlton, J., Mullins, J. & Bird, A.P. Sp1 sites in the mouse Aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8, 2282–2292 (1994).

    Article  CAS  Google Scholar 

  6. Yamada, Y. et al. A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 11q: comparison with chromosome 21q. DNA Seq. 17, 300–306 (2006).

    Article  CAS  Google Scholar 

  7. Yamada, Y. et al. A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q. Genome Res. 14, 247–266 (2004).

    Article  CAS  Google Scholar 

  8. Shen, L. et al. Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet. 3, 2023–2036 (2007).

    Article  CAS  Google Scholar 

  9. Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39, 457–466 (2007).

    Article  CAS  Google Scholar 

  10. Illingworth, R. et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol. 6, e22 (2008).

    Article  Google Scholar 

  11. Rakyan, V.K. et al. An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res. 18, 1518–1529 (2008).

    Article  CAS  Google Scholar 

  12. Rauch, T.A., Wu, X., Zhong, X., Riggs, A.D. & Pfeifer, G.P. A human B cell methylome at 100-base pair resolution. Proc. Natl. Acad. Sci. USA 106, 671–678 (2009).

    Article  CAS  Google Scholar 

  13. Siegfried, Z. et al. DNA methylation represses transcription in vivo. Nat. Genet. 22, 203–206 (1999).

    Article  CAS  Google Scholar 

  14. Lorincz, M.C. & Schubeler, D. RNA polymerase II: just stopping by. Cell 130, 16–18 (2007).

    Article  CAS  Google Scholar 

  15. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    Article  CAS  Google Scholar 

  16. Gal-Yam, E.N. et al. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc. Natl. Acad. Sci. USA 105, 12979–12984 (2008).

    Article  Google Scholar 

  17. Keshet, I. et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat. Genet. 38, 149–153 (2006).

    Article  CAS  Google Scholar 

  18. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).

    Article  CAS  Google Scholar 

  19. Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R. & Young, R.A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    Article  CAS  Google Scholar 

  20. Zhao, X.D. et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–298 (2007).

    Article  CAS  Google Scholar 

  21. Ooi, S.K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    Article  CAS  Google Scholar 

  22. Eden, E., Lipson, D., Yogev, S. & Yakhini, Z. Discovering motifs in ranked lists of DNA sequences. PLOS Comput. Biol. 3, e39 (2007).

    Article  Google Scholar 

  23. Bock, C., Walter, J., Paulsen, M. & Lengauer, T. CpG island mapping by epigenome prediction. PLOS Comput. Biol. 3, e110 (2007).

    Article  Google Scholar 

  24. Bock, C. et al. CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet. 2, e26 (2006).

    Article  Google Scholar 

  25. Gidekel, S. & Bergman, Y. A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a cis-demodification element. J. Biol. Chem. 277, 34521–34530 (2002).

    Article  CAS  Google Scholar 

  26. Eckhardt, F. et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38, 1378–1385 (2006).

    Article  CAS  Google Scholar 

  27. Koslowski, M. et al. Frequent nonrandom activation of germ-line genes in human cancer. Cancer Res. 64, 5988–5993 (2004).

    Article  CAS  Google Scholar 

  28. Simpson, A.J., Caballero, O.L., Jungbluth, A., Chen, Y.T. & Old, L.J. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 5, 615–625 (2005).

    Article  CAS  Google Scholar 

  29. Hajkova, P. et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117, 15–23 (2002).

    Article  CAS  Google Scholar 

  30. Oakes, C.C., La Salle, S., Smiraglia, D.J., Robaire, B. & Trasler, J.M. Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev. Biol. 307, 368–379 (2007).

    Article  CAS  Google Scholar 

  31. Hellman, A. & Chess, A. Gene body-specific methylation on the active X chromosome. Science 315, 1141–1143 (2007).

    Article  CAS  Google Scholar 

  32. Lock, L.F., Melton, D.W., Caskey, C.T. & Martin, G.R. Methylation of the mouse Hprt gene differs on the active and inactive X chromosomes. Mol. Cell. Biol. 6, 914–924 (1986).

    Article  CAS  Google Scholar 

  33. Antequera, F., Boyes, J. & Bird, A. High levels of de novo methylations and altered chromatin structure at CpG islands in cell lines. Cell 62, 503–514 (1990).

    Article  CAS  Google Scholar 

  34. Feldman, N. et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat. Cell Biol. 8, 188–194 (2006).

    Article  CAS  Google Scholar 

  35. Epsztejn-Litman, S. et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat. Struct. Mol. Biol. 15, 1176–1183 (2008).

    Article  CAS  Google Scholar 

  36. Imamura, M. et al. Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells. BMC Dev. Biol. 6, 34 (2006).

    Article  Google Scholar 

  37. Ma, D.K., Chiang, C.H., Ponnusamy, K., Ming, G.L. & Song, H. G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells 26, 2131–2141 (2008).

    Article  CAS  Google Scholar 

  38. Mikkelsen, T.S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008).

    Article  CAS  Google Scholar 

  39. Wutz, A. et al. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389, 745–749 (1997).

    Article  CAS  Google Scholar 

  40. Yu, W. et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202–206 (2008).

    Article  CAS  Google Scholar 

  41. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–543 (2008).

    Article  CAS  Google Scholar 

  42. He, Y., Vogelstein, B., Velculescu, V.E., Papadopoulos, N. & Kinzler, K.W. The antisense transcriptomes of human cells. Science 322, 1855–1857 (2008).

    Article  CAS  Google Scholar 

  43. Jones, P.A. The DNA methylation paradox. Trends Genet. 15, 34–37 (1999).

    Article  CAS  Google Scholar 

  44. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

    Article  CAS  Google Scholar 

  45. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    Article  CAS  Google Scholar 

  46. Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 methylation pre-marks genes for de novo methylation in cancer. Nat. Genet. 39, 232–236 (2007).

    Article  CAS  Google Scholar 

  47. Mohn, F. et al. Lineage-specific Polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008).

    Article  CAS  Google Scholar 

  48. Ohm, J.E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet. 39, 237–242 (2007).

    Article  CAS  Google Scholar 

  49. Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nat. Genet. 39, 157–158 (2007).

    Article  CAS  Google Scholar 

  50. Reynaud, C. et al. Monitoring of urinary excretion of modified nucleosides in cancer patients using a set of six monoclonal antibodies. Cancer Lett. 61, 255–262 (1992).

    Article  CAS  Google Scholar 

  51. Gardiner-Garden, M. & Frommer, M. CpG island in vertebrate genomes. J. Mol. Biol. 196, 261–282 (1987).

    Article  CAS  Google Scholar 

  52. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006).

    Article  CAS  Google Scholar 

  53. Witten, I.H. & Frank, E. Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, San Francisco, 2005).

    Google Scholar 

  54. Farthing, C.R. et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet. 4, e1000116 (2008).

    Article  Google Scholar 

  55. Cowan, C.A., Atienza, J., Melton, D.A. & Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Israel Cancer Research Fund (H.C.), the Rosetrees Trust (H.C.), Lewis Sanders (H.C.), both Philip Morris USA Inc. and Philip Morris International (R.S.) and an Agilent University Relations grant (H.C.).

Author information

Authors and Affiliations

Authors

Contributions

R.S. and D.N. carried out all mDIP, bisulfite and transfection experiments and did most of the data analysis; D.R. and R.S. performed all of the labeling and microarray hybridizations; I.St., Z.Y. and I.Si. were responsible for all the computational biology including the development of algorithms; B.B. and N.B. prepared the DNA from human ES cells; R.S. managed and organized all of the experimental work and generated the main concepts; H.C. wrote the manuscript and contributed to the design and interpretation of all experiments.

Corresponding author

Correspondence to Howard Cedar.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 2430 kb)

Supplementary Table 1

CpG island methylation data (XLS 14692 kb)

Supplementary Table 2

CpG island methylation data – BED file for UCSC upload (TXT 3949 kb)

Supplementary Table 3

Sequence motifs enriched in unmethylated islands (PDF 35 kb)

Supplementary Table 4

Prediction of unmethylated CpG islands (PDF 32 kb)

Supplementary Table 5

UMR methylation data (XLS 1710 kb)

Supplementary Table 6

Non-CpG island housekeeping gene promoters (PDF 81 kb)

Supplementary Table 7

Intragenic methylation and GO analysis of Refseq genes with internal islands (PDF 66 kb)

Supplementary Table 8

Comparison of published results estimating the percentage of methylated CpG islands in the Human genome (PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straussman, R., Nejman, D., Roberts, D. et al. Developmental programming of CpG island methylation profiles in the human genome. Nat Struct Mol Biol 16, 564–571 (2009). https://doi.org/10.1038/nsmb.1594

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1594

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing