Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Precursor-product discrimination by La protein during tRNA metabolism

Abstract

La proteins bind pre-tRNAs at their UUU-3′OH ends, facilitating their maturation. Although the mechanism by which La binds pre-tRNA 3′ trailers is known, the function of the RNA binding β-sheet surface of the RNA-recognition motif (RRM1) is unknown. How La dissociates from UUU-3′OH–containing trailers after 3′ processing is also unknown. Here we show that La preferentially binds pre-tRNAs over processed tRNAs or 3′ trailer products through coupled use of two sites: one on the La motif and another on the RRM1 β-surface that binds elsewhere on tRNA. Two sites provide stable pre-tRNA binding, whereas the processed tRNA and 3′ trailer are released from their single sites relatively fast. RRM1 loop-3 mutations decrease affinity for pre-tRNA and tRNA, but not for the UUU-3′OH trailer, and impair tRNA maturation in vivo. We propose that RRM1 functions in activities that are more complex than UUU-3′OH binding. Accordingly, the RRM1 mutations also impair an RNA chaperone activity of La. The results suggest how La distinguishes precursor from product RNAs, allowing it to recycle onto a new pre-tRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: La can bind non–UUU-3′OH–containing RNA via contacts that are not mediated by the previously characterized RNA 3′OH binding site in the La motif.
Figure 2: Two distinct RNA binding sites on La together enhance stable binding to pre-tRNA.
Figure 3: La shows strong preference for pre-tRNA over a UUU-3′OH trailer.
Figure 4: La RRM1 loop-3 mediates UUU-3′OH–independent tRNA binding.
Figure 5: The La loop mutant is defective in tRNA maturation in vivo.
Figure 6: Model of involvement of La protein in a tRNA maturation pathway.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Maraia, R.J. & Intine, R.V. Recognition of nascent RNA by the human La antigen: conserved and diverged features of structure and function. Mol. Cell. Biol. 21, 367–379 (2001).

    Article  CAS  Google Scholar 

  2. Wolin, S.L. & Cedervall, T. The La protein. Annu. Rev. Biochem. 71, 375–403 (2002).

    Article  CAS  Google Scholar 

  3. Maraia, R.J. & Bayfield, M.A. The La protein-RNA complex surfaces. Mol. Cell 21, 149–152 (2006).

    Article  CAS  Google Scholar 

  4. Teplova, M. et al. Structural basis for recognition and sequestration of UUU-OH 3′-termini of nascent RNA pol III transcripts by La, a rheumatic disease autoantigen. Mol. Cell 21, 75–85 (2006).

    Article  CAS  Google Scholar 

  5. Goodier, J.L., Fan, H. & Maraia, R.J. A carboxy-terminal basic region controls RNA polymerase III transcription factor activity of human La protein. Mol. Cell. Biol. 17, 5823–5832 (1997).

    Article  CAS  Google Scholar 

  6. Alfano, C. et al. Structural analysis of cooperative RNA binding by the La motif and central RRM domain of human La protein. Nat. Struct. Mol. Biol. 11, 323–329 (2004).

    Article  CAS  Google Scholar 

  7. Dong, G., Chakshusmathi, G., Wolin, S.L. & Reinisch, K.M. Structure of the La motif: a winged helix domain mediates RNA binding via a conserved aromatic patch. EMBO J. 23, 1000–1007 (2004).

    Article  CAS  Google Scholar 

  8. Kenan, D.J. & Keene, J.D. La gets its wings. Nat. Struct. Mol. Biol. 11, 303–305 (2004).

    Article  CAS  Google Scholar 

  9. Kotik-Kogan, O., Valentine, E.R., Sanfelice, D., Conte, M.R. & Curry, S. Structural analysis reveals conformational plasticity in the recognition of RNA 3′ ends by the human La protein. Structure 16, 852–862 (2008).

    Article  CAS  Google Scholar 

  10. Curry, S. & Conte, M.R. A terminal affair: 3′-end recognition by the human La protein. Trends Biochem. Sci. 31, 303–305 (2006).

    Article  CAS  Google Scholar 

  11. Aigner, S. et al. Euplotes telomerase contains an La motif protein produced by apparent translational frameshifting. EMBO J. 19, 6230–6239 (2000).

    Article  CAS  Google Scholar 

  12. Stone, M.D. et al. Stepwise protein-mediated RNA folding directs assembly of telomerase ribonucleoprotein. Nature 446, 458–461 (2007).

    Article  CAS  Google Scholar 

  13. He, N. et al. A La-related protein modulates 7SK snRNP integrity to suppress P-TEFb-dependent transcriptional elongation and tumorigenesis. Mol. Cell 29, 588–599 (2008).

    Article  CAS  Google Scholar 

  14. Krueger, B.J. et al. LARP7 is a stable component of the 7SK snRNP while P-TEFb, HEXIM1 and hnRNP A1 are reversibly associated. Nucleic Acids Res. 36, 2219–2229 (2008).

    Article  CAS  Google Scholar 

  15. Aigner, S., Postberg, J., Lipps, H.J. & Cech, T.R. The Euplotes La motif protein p43 has properties of a telomerase-specific subunit. Biochemistry 42, 5736–5747 (2003).

    Article  CAS  Google Scholar 

  16. Yoo, C.J. & Wolin, S.L. The yeast La protein is required for the 3′ endonucleolytic cleavage that matures tRNA precursors. Cell 89, 393–402 (1997).

    Article  CAS  Google Scholar 

  17. Intine, R.V.A. et al. Transfer RNA maturation is controlled by phosphorylation of the human La antigen on serine 366. Mol. Cell 6, 339–348 (2000).

    Article  CAS  Google Scholar 

  18. Huang, Y., Bayfield, M.A., Intine, R.V. & Maraia, R.J. Separate RNA-binding surfaces on the multifunctional La protein mediate distinguishable activities in tRNA maturation. Nat. Struct. Mol. Biol. 13, 611–618 (2006).

    Article  CAS  Google Scholar 

  19. Chakshusmathi, G., Kim, S.D., Rubinson, D.A. & Wolin, S.L.A. La protein requirement for efficient pre-tRNA folding. EMBO J. 22, 6562–6572 (2003).

    Article  CAS  Google Scholar 

  20. Copela, L.A., Chakshusmathi, G., Sherrer, R.L. & Wolin, S.L. The La protein functions redundantly with tRNA modification enzymes to ensure tRNA structural stability. RNA 12, 644–654 (2006).

    Article  CAS  Google Scholar 

  21. Blackburn, E.H. The end of the (DNA) line. Nat. Struct. Biol. 7, 847–850 (2000).

    Article  CAS  Google Scholar 

  22. Schroeder, R., Barta, A. & Semrad, K. Strategies for RNA folding and assembly. Nat. Rev. Mol. Cell Biol. 5, 908–919 (2004).

    Article  CAS  Google Scholar 

  23. Belisova, A. et al. RNA chaperone activity of protein components of human Ro RNPs. RNA 11, 1084–1094 (2005).

    Article  CAS  Google Scholar 

  24. Hendrick, J.P., Wolin, S.L., Rinke, J., Lerner, M.R. & Steitz, J.A. Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol. Cell. Biol. 1, 1138–1149 (1981).

    Article  CAS  Google Scholar 

  25. Maraia, R.J. & Intine, R.V. La protein and its associated small nuclear and nucleolar precursor RNAs. Gene Expr. [review] 10, 41–57 (2002).

    CAS  PubMed  Google Scholar 

  26. Nashimoto, M., Nashimoto, C., Tamura, M., Kaspar, R.L. & Ochi, K. The inhibitory effect of the autoantigen La on in vitro 3′ processing of mammalian precursor tRNAs. J. Mol. Biol. 312, 975–984 (2001).

    Article  CAS  Google Scholar 

  27. Hopper, A.K. & Phizicky, E.M. tRNA transfers to the limelight. Genes Dev. 17, 162–180 (2003).

    Article  CAS  Google Scholar 

  28. Phizicky, E.M. Have tRNA, will travel. Proc. Natl. Acad. Sci. USA 102, 11127–11128 (2005).

    Article  CAS  Google Scholar 

  29. Haeusler, R.A. & Engelke, D.R. Spatial organization of transcription by RNA polymerase III. Nucleic Acids Res. 34, 4826–4836 (2006).

    Article  CAS  Google Scholar 

  30. Pfeifle, J., Anderer, F.A. & Franke, M. Multiple phosphorylation of human SS-B/La autoantigen and its effect on poly(U) and autoantibody binding. Biochim. Biophys. Acta 928, 217–226 (1987).

    Article  CAS  Google Scholar 

  31. Huang, Y., Intine, R.V., Mozlin, A., Hasson, S. & Maraia, R.J. Mutations in the RNA polymerase III subunit Rpc11p that decrease RNA 3′ cleavage activity increase 3′-terminal oligo(U) length and La-dependent tRNA processing. Mol. Cell. Biol. 25, 621–636 (2005).

    Article  CAS  Google Scholar 

  32. Draper, D.E., Grilley, D. & Soto, A.M. Ions and RNA folding. Annu. Rev. Biophys. Biomol. Struct. 34, 221–243 (2005).

    Article  CAS  Google Scholar 

  33. Setzer, D.R. Measuring equilibrium and kinetic constants using gel retardation assays. Methods Mol. Biol. 118, 115–128 (1999).

    CAS  PubMed  Google Scholar 

  34. Ohndorf, U.M., Steegborn, C., Knijff, R. & Sondermann, P. Contributions of the individual domains in human La protein to its RNA 3′-end binding activity. J. Biol. Chem. 276, 27188–27196 (2001).

    Article  CAS  Google Scholar 

  35. Horke, S., Reumann, K., Schweizer, M., Will, H. & Heise, T. Nuclear trafficking of La protein depends on a newly identified NoLS and the ability to bind RNA. J. Biol. Chem. 279, 26563–26570 (2004).

    Article  CAS  Google Scholar 

  36. Intine, R.V., Dundr, M., Misteli, T. & Maraia, R.J. Aberrant nuclear trafficking of La protein leads to disordered processing of associated precursor tRNAs. Mol. Cell 9, 1113–1123 (2002).

    Article  CAS  Google Scholar 

  37. Van Horn, D.J., Yoo, C.J., Xue, D., Shi, H. & Wolin, S.L. The La protein in Schizosaccharomyces pombe: a conserved yet dispensable phosphoprotein that functions in tRNA maturation. RNA 3, 1434–1443 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bayfield, M.A., Kaiser, T.E., Intine, R.V. & Maraia, R.J. Conservation of a masked nuclear export activity of La proteins and its effects on tRNA maturation. Mol. Cell. Biol. 27, 3303–3312 (2007).

    Article  CAS  Google Scholar 

  39. Wang, Z., Luo, T. & Roeder, R.G. Identification of an autonomously initiating RNA polymerase III holoenzyme containing a novel factor that is selectively inactivated during protein synthesis inhibition. Genes Dev. 11, 2371–2382 (1997).

    Article  CAS  Google Scholar 

  40. Fairley, J.A. et al. Human La is found at RNA polymerase III-transcribed genes in vivo. Proc. Natl. Acad. Sci. USA 102, 18350–18355 (2005).

    Article  CAS  Google Scholar 

  41. French, S.L. et al. Visual analysis of the yeast 5S rRNA gene transcriptome: regulation and role of La protein. Mol. Cell. Biol. 28, 4576–4587 (2008).

    Article  CAS  Google Scholar 

  42. Anderson, J. et al. The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev. 12, 3650–3662 (1998).

    Article  CAS  Google Scholar 

  43. Calvo, O. et al. GCD14p, a repressor of GCN4 translation, cooperates with Gcd10p and Lhp1p in the maturation of initiator methionyl-tRNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 4167–4181 (1999).

    Article  CAS  Google Scholar 

  44. Johansson, M.J. & Bystrom, A.S. Dual function of the tRNA(m5U54)methyltransferase in tRNA maturation. RNA 8, 324–335 (2002).

    Article  CAS  Google Scholar 

  45. Nishikura, K. & De Robertis, E.M. RNA processing in microinjected Xenopus oocytes. Sequential addition of base modifications in the spliced transfer RNA. J. Mol. Biol. 145, 405–420 (1981).

    Article  CAS  Google Scholar 

  46. Maglott, E.J., Deo, S.S., Przykorska, A. & Glick, G.D. Conformational transitions of an unmodified tRNA: implications for RNA folding. Biochemistry 37, 16349–16359 (1998).

    Article  CAS  Google Scholar 

  47. Maris, C., Dominguez, C. & Allain, F.H. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 272, 2118–2131 (2005).

    Article  CAS  Google Scholar 

  48. Mikulecky, P.J. et al. Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat. Struct. Mol. Biol. 11, 1206–1214 (2004).

    Article  CAS  Google Scholar 

  49. Rajkowitsch, L. & Schroeder, R. Dissecting RNA chaperone activity. RNA 13, 2053–2060 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Setzer for advice, protocols and RNA binding data analysis tools, M. Nashimoto (Niigata University of Pharmacy and Applied Life Sciences) for the human tRNAArgACG gene and R. Schroeder (University of Vienna) for cis-splicing intron DNA. We thank D. Setzer, D. Engelke and M. Teplova for comments. This work was supported by the Intramural Research Program of the US National Institute of Child Health and Human Development, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

M.A.B. performed all experiments; R.J.M. and M.A.B. designed the study and analyzed the data; R.J.M. wrote the paper with editing by M.A.B.

Note: Supplementary information is available on the Nature Structural & Molecular Biology website.

Corresponding author

Correspondence to Richard J Maraia.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 4149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayfield, M., Maraia, R. Precursor-product discrimination by La protein during tRNA metabolism. Nat Struct Mol Biol 16, 430–437 (2009). https://doi.org/10.1038/nsmb.1573

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1573

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing