Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing

Abstract

Mammalian gene silencing is established through methylation of histones and DNA, although the order in which these modifications occur remains contentious. Using the human β-globin locus as a model, we demonstrate that symmetric methylation of histone H4 arginine 3 (H4R3me2s) by the protein arginine methyltransferase PRMT5 is required for subsequent DNA methylation. H4R3me2s serves as a direct binding target for the DNA methyltransferase DNMT3A, which interacts through the ADD domain containing the PHD motif. Loss of the H4R3me2s mark through short hairpin RNA–mediated knockdown of PRMT5 leads to reduced DNMT3A binding, loss of DNA methylation and gene activation. In primary erythroid progenitors from adult bone marrow, H4R3me2s marks the inactive methylated globin genes coincident with localization of PRMT5. Our findings define DNMT3A as both a reader and a writer of repressive epigenetic marks, thereby directly linking histone and DNA methylation in gene silencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PRMT5 symmetrically dimethylates histone H4R3 on the gene encoding γ-globin.
Figure 2: PRMT5 mediates transcriptional silencing of the γ-gene.
Figure 3: PRMT5 and DNMT3A function cooperatively in gene silencing.
Figure 4: DNMT3A binds specifically to histone H4 carrying the R3me2s modification.
Figure 5: Role of PRMT5 in developmental globin gene silencing.
Figure 6: Model of PRMT5-induced silencing of gene expression.

Similar content being viewed by others

References

  1. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  2. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

    Article  Google Scholar 

  3. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  Google Scholar 

  4. Bird, A.P. & Wolffe, A.P. Methylation-induced repression–belts, braces, and chromatin. Cell 99, 451–454 (1999).

    Article  CAS  Google Scholar 

  5. Jones, P.A. & Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415–428 (2002).

    Article  CAS  Google Scholar 

  6. Freitag, M. & Selker, E.U. Controlling DNA methylation: many roads to one modification. Curr. Opin. Genet. Dev. 15, 191–199 (2005).

    Article  CAS  Google Scholar 

  7. Klose, R.J. & Bird, A.P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).

    Article  CAS  Google Scholar 

  8. Eden, S., Hashimshony, T., Keshet, I., Cedar, H. & Thorne, A.W. DNA methylation models histone acetylation. Nature 394, 842 (1998).

    Article  CAS  Google Scholar 

  9. Schubeler, D. et al. Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol. Cell. Biol. 20, 9103–9112 (2000).

    Article  CAS  Google Scholar 

  10. Johnson, L.M. et al. The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr. Biol. 17, 379–384 (2007).

    Article  CAS  Google Scholar 

  11. Fuks, F. et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 278, 4035–4040 (2003).

    Article  CAS  Google Scholar 

  12. Sarraf, S.A. & Stancheva, I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol. Cell 15, 595–605 (2004).

    Article  CAS  Google Scholar 

  13. Tamaru, H. et al. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat. Genet. 34, 75–79 (2003).

    Article  CAS  Google Scholar 

  14. Fuks, F. DNA methylation and histone modifications: teaming up to silence genes. Curr. Opin. Genet. Dev. 15, 490–495 (2005).

    Article  CAS  Google Scholar 

  15. Schotta, G. et al. A silencing pathway to induce H3–K9 and H4–K20 trimethylation at constitutive heterochromatin. Genes Dev. 18, 1251–1262 (2004).

    Article  CAS  Google Scholar 

  16. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

    Article  CAS  Google Scholar 

  17. Fuks, F., Hurd, P.J., Deplus, R. & Kouzarides, T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 31, 2305–2312 (2003).

    Article  CAS  Google Scholar 

  18. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    Article  CAS  Google Scholar 

  19. van der Ploeg, L.H. & Flavell, R.A. DNA methylation in the human gamma-delta-beta-globin locus in erythroid and non-erythroid cells. Cell 19, 947–958 (1980).

    Article  CAS  Google Scholar 

  20. Zhao, Q. et al. Repression of human gamma-globin gene expression by a short isoform of the NF-E4 protein is associated with loss of NF-E2 and RNA polymerase II recruitment to the promoter. Blood 107, 2138–2145 (2006).

    Article  CAS  Google Scholar 

  21. Pollack, B.P. et al. The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. J. Biol. Chem. 274, 31531–31542 (1999).

    Article  CAS  Google Scholar 

  22. Huang, S., Litt, M. & Felsenfeld, G. Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications. Genes Dev. 19, 1885–1893 (2005).

    Article  CAS  Google Scholar 

  23. Fabbrizio, E. et al. Negative regulation of transcription by the type II arginine methyltransferase PRMT5. EMBO Rep. 3, 641–645 (2002).

    Article  CAS  Google Scholar 

  24. Pal, S., Vishwanath, S.N., Erdjument-Bromage, H., Tempst, P. & Sif, S. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol. Cell. Biol. 24, 9630–9645 (2004).

    Article  CAS  Google Scholar 

  25. Branscombe, T.L. et al. PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J. Biol. Chem. 276, 32971–32976 (2001).

    Article  CAS  Google Scholar 

  26. Goren, A. et al. Fine tuning of globin gene expression by DNA methylation. PLoS ONE 1, e46 (2006).

    Article  Google Scholar 

  27. Jane, S.M., Ney, P.A., Vanin, E.F., Gumucio, D.L. & Nienhuis, A.W. Identification of a stage selector element in the human gamma-globin gene promoter that fosters preferential interaction with the 5′ HS2 enhancer when in competition with the beta-promoter. EMBO J. 11, 2961–2969 (1992).

    Article  CAS  Google Scholar 

  28. Cheng, X. & Blumenthal, R.M. Mammalian DNA methyltransferases: a structural perspective. Structure 16, 341–350 (2008).

    Article  Google Scholar 

  29. Maurer-Stroh, S. et al. The Tudor domain 'Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem. Sci. 28, 69–74 (2003).

    Article  CAS  Google Scholar 

  30. Bienz, M. The PHD finger, a nuclear protein-interaction domain. Trends Biochem. Sci. 31, 35–40 (2006).

    Article  CAS  Google Scholar 

  31. Ooi, S.K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    Article  CAS  Google Scholar 

  32. Ancelin, K. et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat. Cell Biol. 8, 623–630 (2006).

    Article  CAS  Google Scholar 

  33. Ruthenburg, A.J., Allis, C.D. & Wysocka, J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15–30 (2007).

    Article  CAS  Google Scholar 

  34. Shi, X. et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96–99 (2006).

    Article  CAS  Google Scholar 

  35. Pena, P.V. et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442, 100–103 (2006).

    Article  CAS  Google Scholar 

  36. Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006).

    Article  CAS  Google Scholar 

  37. Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91–95 (2006).

    Article  CAS  Google Scholar 

  38. Vermeulen, M. et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58–69 (2007).

    Article  CAS  Google Scholar 

  39. Iwase, S. et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128, 1077–1088 (2007).

    Article  CAS  Google Scholar 

  40. Shi, X. et al. Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36. J. Biol. Chem. 282, 2450–2455 (2007).

    Article  CAS  Google Scholar 

  41. Ramon-Maiques, S. et al. The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc. Natl. Acad. Sci. USA 104, 18993–18998 (2007).

    Article  CAS  Google Scholar 

  42. Cote, J. & Richard, S. Tudor domains bind symmetrical dimethylated arginines. J. Biol. Chem. 280, 28476–28483 (2005).

    Article  CAS  Google Scholar 

  43. Slater, L.M., Allen, M.D. & Bycroft, M. Structural variation in PWWP domains. J. Mol. Biol. 330, 571–576 (2003).

    Article  CAS  Google Scholar 

  44. Fraser, P., Pruzina, S., Antoniou, M. & Grosveld, F. Each hypersensitive site of the human beta-globin locus control region confers a different developmental pattern of expression on the globin genes. Genes Dev. 7, 106–113 (1993).

    Article  CAS  Google Scholar 

  45. Carter, D., Chakalova, L., Osborne, C.S., Dai, Y.F. & Fraser, P. Long-range chromatin regulatory interactions in vivo. Nat. Genet. 32, 623–626 (2002).

    Article  CAS  Google Scholar 

  46. Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell 10, 1453–1465 (2002).

    Article  CAS  Google Scholar 

  47. Demers, C. et al. Activator-mediated recruitment of the MLL2 methyltransferase complex to the beta-globin locus. Mol. Cell 27, 573–584 (2007).

    Article  CAS  Google Scholar 

  48. Saunthararajah, Y. et al. Effects of 5-aza-2′-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood 102, 3865–3870 (2003).

    Article  CAS  Google Scholar 

  49. Estève, P.O. et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev. 20, 3089–3103 (2006).

    Article  Google Scholar 

  50. Smallwood, A., Esteve, P.O., Pradhan, S. & Carey, M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 21, 1169–1178 (2007).

    Article  CAS  Google Scholar 

  51. Lindroth, A.M. et al. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO J. 23, 4286–4296 (2004).

    Article  CAS  Google Scholar 

  52. Zhao, Q., Cumming, H., Cerruti, L., Cunningham, J.M. & Jane, S.M. Site-specific acetylation of the fetal globin activator NF-E4 prevents its ubiquitination and regulates its interaction with the histone deacetylase, HDAC1. J. Biol. Chem. 279, 41477–41486 (2004).

    Article  CAS  Google Scholar 

  53. Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872 (2005).

    Article  CAS  Google Scholar 

  54. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    Article  CAS  Google Scholar 

  55. Brand, M., Rampalli, S., Chaturvedi, C.P. & Dilworth, F.J. Analysis of epigenetic modifications of chromatin at specific gene loci by native chromatin immunoprecipitation of nucleosomes isolated using hydroxyapatite chromatography. Nat. Protoc. 3, 398–409 (2008).

    Article  CAS  Google Scholar 

  56. Lavelle, D., Vaitkus, K., Hankewych, M., Singh, M. & DeSimone, J. Effect of 5-aza-2′-deoxycytidine (Dacogen) on covalent histone modifications of chromatin associated with the epsilon-, gamma-, and beta-globin promoters in Papio anubis. Exp. Hematol. 34, 339–347 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Pestka (University of Medicine and Dentistry of New Jersey) for the PRMT5Δ plasmid, R. Gaynor (University of Texas Southwestern) for the PRMT5 plasmid and members of the Jane and Cunningham laboratories for helpful discussions. This work was supported by grants from The National Health and Medical Research Council of Australia, the US National Institutes of Health (PO1 HL53749-03 and RO1 HL69232-01) (S.M.J.), The Roche Foundation for anemia research (RoFAR) (S.M.J.), The Cooley's Anemia Foundation (Q.Z.), The Natural Science Foundation of China #30670422 (Q.Z.), Cancer Centre Support CORE Grant P30 CA 21765, the American Lebanese Syrian Associated Charities (ALSAC) and the Assisi Foundation of Memphis (J.M.C.).

Author information

Authors and Affiliations

Authors

Contributions

Q.Z., G.R., L.C. and Y.T.T. performed the experiments; R.L.M. and R.J.S. performed and analyzed the mass spectrometry; Q.Z., G.R. and S.M.J. designed and analyzed the research; D.J.C., C.D.A., H.L., D.J.P. and J.M.C. provided ideas, reagents and discussion; Q.Z., G.R. and S.M.J. wrote the manuscript.

Corresponding authors

Correspondence to Quan Zhao or Stephen M Jane.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–4 (PDF 3074 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Q., Rank, G., Tan, Y. et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16, 304–311 (2009). https://doi.org/10.1038/nsmb.1568

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1568

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing