Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90

Abstract

The molecular chaperone heat-shock protein 90 (Hsp90) couples ATP hydrolysis to conformational changes driving a reaction cycle that is required for substrate activation. Recent structural analysis provided snapshots of the open and closed states of Hsp90, which mark the starting and end points of these changes. Using fluorescence resonance energy transfer (FRET), we dissected the cycle kinetically and identified the intermediates on the pathway. The conformational transitions are orders of magnitude slower than the ATP-hydrolysis step and thus are the limiting events during the reaction cycle. Furthermore, these structural changes can be tightly regulated by cochaperones, being completely inhibited by Sti1 or accelerated by Aha1. In fact, even in the absence of nucleotide, Aha1 induces Hsp90 rearrangements that speed up the conformational cycle. This comprehensive reconstitution of the Hsp90 cycle defines a controlled progression through distinct intermediates that can be modulated by conformation-sensitive cochaperones.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Establishment of the FRET system.
Figure 2: ATPγS-induced conformational changes.
Figure 3: Kinetic model of the ATPase cycle of Hsp90.
Figure 4: Conformational changes are coupled to N-terminal dimerization.
Figure 5: Cochaperone regulation of conformational changes.
Figure 6: Model of the Hsp90 cycle.

References

  1. Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  Google Scholar 

  2. Rutherford, S.L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    Article  CAS  Google Scholar 

  3. Whitesell, L. & Lindquist, S.L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 5, 761–772 (2005).

    Article  CAS  Google Scholar 

  4. Geller, R., Vignuzzi, M., Andino, R. & Frydman, J. Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes Dev. 21, 195–205 (2007).

    Article  CAS  Google Scholar 

  5. Toogun, O.A., Dezwaan, D.C. & Freeman, B.C. The Hsp90 molecular chaperone modulates multiple telomerase activities. Mol. Cell. Biol. 28, 457–467 (2008).

    Article  CAS  Google Scholar 

  6. Nathan, D.F. & Lindquist, S. Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol. Cell. Biol. 15, 3917–3925 (1995).

    Article  CAS  Google Scholar 

  7. Picard, D. Heat-shock protein 90, a chaperone for folding and regulation. Cell. Mol. Life Sci. 59, 1640–1648 (2002).

    Article  CAS  Google Scholar 

  8. Mayer, M.P. & Bukau, B. Molecular chaperones: the busy life of Hsp90. Curr. Biol. 9, R322–R325 (1999).

    Article  CAS  Google Scholar 

  9. Grenert, J.P., Johnson, B.D. & Toft, D.O. The importance of ATP binding and hydrolysis by hsp90 in formation and function of protein heterocomplexes. J. Biol. Chem. 274, 17525–17533 (1999).

    Article  CAS  Google Scholar 

  10. Prodromou, C. et al. The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. EMBO J. 19, 4383–4392 (2000).

    Article  CAS  Google Scholar 

  11. Weikl, T. et al. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle. J. Mol. Biol. 303, 583–592 (2000).

    Article  CAS  Google Scholar 

  12. Richter, K. et al. Conserved conformational changes in the ATPase cycle of human Hsp90. J. Biol. Chem. 283, 17757–17765 (2008).

    Article  CAS  Google Scholar 

  13. Frey, S., Leskovar, A., Reinstein, J. & Buchner, J. The ATPase cycle of the endoplasmic chaperone Grp94. J. Biol. Chem. 282, 35612–35620 (2007).

    Article  CAS  Google Scholar 

  14. Leskovar, A. et al. The ATPase cycle of the mitochondrial Hsp90 analog Trap1. J. Biol. Chem. 283, 11677–11688 (2008).

    Article  CAS  Google Scholar 

  15. Dutta, R. & Inouye, M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci. 25, 24–28 (2000).

    Article  CAS  Google Scholar 

  16. Minami, Y. et al. The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo. Mol. Cell. Biol. 14, 1459–1464 (1994).

    Article  CAS  Google Scholar 

  17. Shiau, A.K., Harris, S.F., Southworth, D.R. & Agard, D.A. Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127, 329–340 (2006).

    Article  CAS  Google Scholar 

  18. Cunningham, C.N., Krukenberg, K.A. & Agard, D.A. Intra- and inter-monomer interactions are required to synergistically facilitate ATP hydrolysis in Hsp90. J. Biol. Chem. 283, 21170–21178 (2008).

    Article  CAS  Google Scholar 

  19. Ali, M.M. et al. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013–1017 (2006).

    Article  CAS  Google Scholar 

  20. Dollins, D.E., Warren, J.J., Immormino, R.M. & Gewirth, D.T. Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones. Mol. Cell 28, 41–56 (2007).

    Article  CAS  Google Scholar 

  21. Panaretou, B. et al. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J. 17, 4829–4836 (1998).

    Article  CAS  Google Scholar 

  22. Obermann, W.M. et al. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J. Cell Biol. 143, 901–910 (1998).

    Article  CAS  Google Scholar 

  23. Scheibel, T., Weikl, T. & Buchner, J. Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence. Proc. Natl. Acad. Sci. USA 95, 1495–1499 (1998).

    Article  CAS  Google Scholar 

  24. Smith, D.F. Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol. Endocrinol. 7, 1418–1429 (1993).

    CAS  PubMed  Google Scholar 

  25. Freeman, B.C. & Morimoto, R.I. The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J. 15, 2969–2979 (1996).

    Article  CAS  Google Scholar 

  26. Pratt, W.B. & Toft, D.O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18, 306–360 (1997).

    CAS  PubMed  Google Scholar 

  27. Wandinger, S.K., Richter, K. & Buchner, J. The Hsp90 chaperone machinery. J. Biol. Chem. 283, 18473–18477 (2008).

    Article  CAS  Google Scholar 

  28. Prodromou, C. et al. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J. 18, 754–762 (1999).

    Article  CAS  Google Scholar 

  29. Richter, K. et al. Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle. J. Biol. Chem. 278, 10328–10333 (2003).

    Article  CAS  Google Scholar 

  30. Panaretou, B. et al. Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol. Cell 10, 1307–1318 (2002).

    Article  CAS  Google Scholar 

  31. Nathan, D.F., Vos, M.H. & Lindquist, S. In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc. Natl. Acad. Sci. USA 94, 12949–12956 (1997).

    Article  CAS  Google Scholar 

  32. Whitesell, L. et al. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl. Acad. Sci. USA 91, 8324–8328 (1994).

    Article  CAS  Google Scholar 

  33. Richter, K. et al. Intrinsic inhibition of the Hsp90 ATPase activity. J. Biol. Chem. 281, 11301–11311 (2006).

    Article  CAS  Google Scholar 

  34. Meyer, P. et al. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J. 23, 1402–1410 (2004).

    Article  CAS  Google Scholar 

  35. Dollins, D.E., Immormino, R.M. & Gewirth, D.T. Structure of unliganded GRP94, the endoplasmic reticulum Hsp90. Basis for nucleotide-induced conformational change. J. Biol. Chem. 280, 30438–30447 (2005).

    Article  CAS  Google Scholar 

  36. McLaughlin, S.H., Ventouras, L.A., Lobbezoo, B. & Jackson, S.E. Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform. J. Mol. Biol. 344, 813–826 (2004).

    Article  CAS  Google Scholar 

  37. Ali, J.A., Jackson, A.P., Howells, A.J. & Maxwell, A. The 43-kilodalton N-terminal fragment of the DNA gyrase B protein hydrolyzes ATP and binds coumarin drugs. Biochemistry 32, 2717–2724 (1993).

    Article  CAS  Google Scholar 

  38. Stafford, W.F. III. Boundary analysis in sedimentation transport experiments: A procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal. Biochem. 203, 295–301 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft to J.B. (SFB594) and K.R. (RI1873-1/1) and the Fonds der Chemischen Industrie to J.B. and K.R. We thank E. Simpson, T. Hugel, M. Feige, T.M. Franzmann, J. Reinstein and C. Becker for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.H. performed experiments, data analysis and wrote the manuscript; K.R. performed data analysis and wrote the manuscript; J.B. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Johannes Buchner.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 477 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hessling, M., Richter, K. & Buchner, J. Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16, 287–293 (2009). https://doi.org/10.1038/nsmb.1565

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1565

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing