Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner

Abstract

The DEAD-box protein DBP5 is essential for mRNA export in both yeast and humans. It binds RNA and is concentrated and locally activated at the cytoplasmic side of the nuclear pore complex. We have determined the crystal structures of human DBP5 bound to RNA and AMPPNP, and bound to the cytoplasmic nucleoporin NUP214. The structures reveal that binding of DBP5 to nucleic acid and to NUP214 is mutually exclusive. Using in vitro assays, we demonstrate that NUP214 decreases both the RNA binding and ATPase activities of DBP5. The interactions are mediated by conserved residues, implying a conserved recognition mechanism. These results suggest a framework for the consecutive steps leading to the release of mRNA at the final stages of nuclear export. More generally, they provide a paradigm for how binding of regulators can specifically inhibit DEAD-box proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The human DBP5–RNA–AMPPNP complex.
Figure 2: The human DBP5–NUP214 complex.
Figure 3: The DBP5–NUP214 interaction is mediated by conserved residues.
Figure 4: Mutually exclusive binding of DBP5 to RNA–AMPPNP and to NUP214.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Terry, L.J., Shows, E.B. & Wente, S.R. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318, 1412–1416 (2007).

    Article  CAS  Google Scholar 

  2. Lim, R.Y., Ullman, K.S. & Fahrenkrog, B. Biology and biophysics of the nuclear pore complex and its components. Int. Rev. Cell Mol. Biol. 267, 299–342 (2008).

    Article  CAS  Google Scholar 

  3. Schwartz, T.U. Modularity within the architecture of the nuclear pore complex. Curr. Opin. Struct. Biol. 15, 221–226 (2005).

    Article  CAS  Google Scholar 

  4. Frey, S. & Gorlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130, 512–523 (2007).

    Article  CAS  Google Scholar 

  5. Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007).

    Article  CAS  Google Scholar 

  6. Kohler, A. & Hurt, E. Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Biol. 8, 761–773 (2007).

    Article  Google Scholar 

  7. Cole, C.N. & Scarcelli, J.J. Transport of messenger RNA from the nucleus to the cytoplasm. Curr. Opin. Cell Biol. 18, 299–306 (2006).

    Article  CAS  Google Scholar 

  8. Cook, A., Bono, F., Jinek, M. & Conti, E. Structural biology of nucleocytoplasmic transport. Annu. Rev. Biochem. 76, 647–671 (2007).

    Article  CAS  Google Scholar 

  9. Grant, R.P., Neuhaus, D. & Stewart, M. Structural basis for the interaction between the Tap/NXF1 UBA domain and FG nucleoporins at 1 resolution. J. Mol. Biol. 326, 849–858 (2003).

    Article  CAS  Google Scholar 

  10. Fribourg, S., Braun, I.C., Izaurralde, E. & Conti, E. Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol. Cell 8, 645–656 (2001).

    Article  CAS  Google Scholar 

  11. Iglesias, N. & Stutz, F. Regulation of mRNP dynamics along the export pathway. FEBS Lett. 582, 1987–1996 (2008).

    Article  CAS  Google Scholar 

  12. Stewart, M. Ratcheting mRNA out of the nucleus. Mol. Cell 25, 327–330 (2007).

    Article  CAS  Google Scholar 

  13. Snay-Hodge, C.A., Colot, H.V., Goldstein, A.L. & Cole, C.N. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J. 17, 2663–2676 (1998).

    Article  CAS  Google Scholar 

  14. Tseng, S.S. et al. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J. 17, 2651–2662 (1998).

    Article  CAS  Google Scholar 

  15. Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 18, 4332–4347 (1999).

    Article  CAS  Google Scholar 

  16. Kraemer, D., Wozniak, R.W., Blobel, G. & Radu, A. The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. Proc. Natl. Acad. Sci. USA 91, 1519–1523 (1994).

    Article  CAS  Google Scholar 

  17. Del Priore, V. et al. A structure/function analysis of Rat7p/Nup159p, an essential nucleoporin of Saccharomyces cerevisiae. J. Cell Sci. 110, 2987–2999 (1997).

    CAS  PubMed  Google Scholar 

  18. Cheng, Z., Coller, J., Parker, R. & Song, H. Crystal structure and functional analysis of DEAD-box protein Dhh1p. RNA 11, 1258–1270 (2005).

    Article  CAS  Google Scholar 

  19. Shi, H., Cordin, O., Minder, C.M., Linder, P. & Xu, R.M. Crystal structure of the human ATP-dependent splicing and export factor UAP56. Proc. Natl. Acad. Sci. USA 101, 17628–17633 (2004).

    Article  CAS  Google Scholar 

  20. Sengoku, T., Nureki, O., Nakamura, A., Kobayashi, S. & Yokoyama, S. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125, 287–300 (2006).

    Article  CAS  Google Scholar 

  21. Bono, F., Ebert, J., Lorentzen, E. & Conti, E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126, 713–725 (2006).

    Article  CAS  Google Scholar 

  22. Andersen, C.B. et al. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313, 1968–1972 (2006).

    Article  CAS  Google Scholar 

  23. Jankowsky, E. & Fairman, M.E. RNA helicases-one fold for many functions. Curr. Opin. Struct. Biol. 17, 316–324 (2007).

    Article  CAS  Google Scholar 

  24. Cordin, O., Banroques, J., Tanner, N.K. & Linder, P. The DEAD-box protein family of RNA helicases. Gene 367, 17–37 (2006).

    Article  CAS  Google Scholar 

  25. Weirich, C.S. et al. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat. Cell Biol. 8, 668–676 (2006).

    Article  CAS  Google Scholar 

  26. Alcazar-Roman, A.R., Tran, E.J., Guo, S. & Wente, S.R. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat. Cell Biol. 8, 711–716 (2006).

    Article  CAS  Google Scholar 

  27. Lund, M.K. & Guthrie, C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol. Cell 20, 645–651 (2005).

    Article  CAS  Google Scholar 

  28. Tran, E.J., Zhou, Y., Corbett, A.H. & Wente, S.R. The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Mol. Cell 28, 850–859 (2007).

    Article  CAS  Google Scholar 

  29. Zhao, J., Jin, S.B., Bjorkroth, B., Wieslander, L. & Daneholt, B. The mRNA export factor Dbp5 is associated with Balbiani ring mRNP from gene to cytoplasm. EMBO J. 21, 1177–1187 (2002).

    Article  CAS  Google Scholar 

  30. Estruch, F. & Cole, C.N. An early function during transcription for the yeast mRNA export factor Dbp5p/Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. Mol. Biol. Cell 14, 1664–1676 (2003).

    Article  CAS  Google Scholar 

  31. Gross, T. et al. The DEAD-box RNA helicase Dbp5 functions in translation termination. Science 315, 646–649 (2007).

    Article  CAS  Google Scholar 

  32. Scarcelli, J.J. et al. Synthetic genetic array analysis in Saccharomyces cerevisiae provides evidence for an interaction between RAT8/DBP5 and genes encoding P-body components. Genetics 179, 1945–1955 (2008).

    Article  CAS  Google Scholar 

  33. Napetschnig, J., Blobel, G. & Hoelz, A. Crystal structure of the N-terminal domain of the human protooncogene Nup214/CAN. Proc. Natl. Acad. Sci. USA 104, 1783–1788 (2007).

    Article  CAS  Google Scholar 

  34. Weirich, C.S., Erzberger, J.P., Berger, J.M. & Weis, K. The N-terminal domain of Nup159 forms a β-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol. Cell 16, 749–760 (2004).

    Article  CAS  Google Scholar 

  35. Reichmann, D., Phillip, Y., Carmi, A. & Schreiber, G. On the contribution of water-mediated interactions to protein-complex stability. Biochemistry 47, 1051–1060 (2008).

    Article  CAS  Google Scholar 

  36. Miller, A.L. et al. Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1-mRNA export pathway. J. Biol. Chem. 279, 51022–51032 (2004).

    Article  CAS  Google Scholar 

  37. Terry, L.J. & Wente, S.R. Nuclear mRNA export requires specific FG nucleoporins for translocation through the nuclear pore complex. J. Cell Biol. 178, 1121–1132 (2007).

    Article  CAS  Google Scholar 

  38. Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  Google Scholar 

  39. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  40. McCoy, A.J., Storoni, L.C. & Read, R.J. Simple algorithm for a maximum-likelihood SAD function. Acta Crystallogr. D Biol. Crystallogr. 60, 1220–1228 (2004).

    Article  Google Scholar 

  41. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  42. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  43. Painter, J. & Merritt, E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62, 439–450 (2006).

    Article  Google Scholar 

  44. Ballut, L. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 12, 861–869 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank F. Bonneau for help with the helicase assays; J. Basquin and K. Valer-Saldaña at the Crystallization Facility of the department; J. Ebert, N. Fukuhara and E. Lorentzen for preliminary stages of the project; C. Schulze-Briese and the staff at beamline PXII at SLS (Villigen, Zurich); M. Hammel at the SAXS beamline at Berkeley and F. Förster (MPI Biochemistry) for help in analyzing the SAXS data. We also would like to thank P. Brick, E. Izaurralde and A. Cook for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.v.M. cloned and purified the proteins, solved the structures, and carried out the pull-down and ATPase assays. C.B. carried out the Biacore experiments. E.C. supervised the project. E.C. and H.v.M. wrote the paper.

Corresponding author

Correspondence to Elena Conti.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 3281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Moeller, H., Basquin, C. & Conti, E. The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nat Struct Mol Biol 16, 247–254 (2009). https://doi.org/10.1038/nsmb.1561

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1561

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing