Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transient ribosomal attenuation coordinates protein synthesis and co-translational folding

Abstract

Clustered codons that pair to low-abundance tRNA isoacceptors can form slow-translating regions in the mRNA and cause transient ribosomal arrest. We report that folding efficiency of the Escherichia coli multidomain protein SufI can be severely perturbed by alterations in ribosome-mediated translational attenuation. Such alterations were achieved by global acceleration of the translation rate with tRNA excess in vitro or by synonymous substitutions to codons with highly abundant tRNAs both in vitro and in vivo. Conversely, the global slow-down of the translation rate modulated by low temperature suppresses the deleterious effect of the altered translational attenuation pattern. We propose that local discontinuous translation temporally separates the translation of segments of the peptide chain and actively coordinates their co-translational folding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prediction of the translation rate in the ORFs of the E. coli transcriptome.
Figure 2: SufI is translated via many transient intermediates, as predicted from the translation-rate profile (a) and experimentally detected in synchronized in vitro translation in an E. coli cell-free system (b).
Figure 3: Altering the pattern of the slow-translating patches perturbs the co-translational folding of SufI.
Figure 4: Decreased translation temperature counterbalances the altered pattern of intrinsic ribosomal attenuation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Dong, H., Nilsson, L. & Kurland, C.G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol. 260, 649–663 (1996).

    Article  CAS  Google Scholar 

  2. Ikemura, T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 2, 13–34 (1985).

    CAS  PubMed  Google Scholar 

  3. Lavner, Y. & Kotlar, D. Codon bias as a factor in regulating expression via translation rate in the human genome. Gene 345, 127–138 (2005).

    Article  CAS  Google Scholar 

  4. Dittmar, K.A., Goodenbour, J.M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).

    Article  Google Scholar 

  5. Elf, J., Nilsson, D., Tenson, T. & Ehrenberg, M. Selective charging of tRNA isoacceptors explains patterns of codon usage. Science 300, 1718–1722 (2003).

    Article  CAS  Google Scholar 

  6. Kanaya, S., Yamada, Y., Kudo, Y. & Ikemura, T. Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene 238, 143–155 (1999).

    Article  CAS  Google Scholar 

  7. Jansen, R., Bussemaker, H.J. & Gerstein, M. Revisiting the codon adaptation index from a whole-genome perspective: analyzing the relationship between gene expression and codon occurrence in yeast using a variety of models. Nucleic Acids Res. 31, 2242–2251 (2003).

    Article  CAS  Google Scholar 

  8. Angov, E., Hillier, C.J., Kincaid, R.L. & Lyon, J.A. Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS ONE 3, e2189 (2008).

    Article  Google Scholar 

  9. Coleman, J.R. et al. Virus attenuation by genome-scale changes in codon pair bias. Science 320, 1784–1787 (2008).

    Article  CAS  Google Scholar 

  10. Kimchi-Sarfaty, C. et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525–528 (2007).

    Article  CAS  Google Scholar 

  11. Thanaraj, T.A. & Argos, P. Protein secondary structural types are differentially coded on messenger RNA. Protein Sci. 5, 1973–1983 (1996).

    Article  CAS  Google Scholar 

  12. Varenne, S., Buc, J., Lloubes, R. & Lazdunski, C. Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J. Mol. Biol. 180, 549–576 (1984).

    Article  CAS  Google Scholar 

  13. Makhoul, C.H. & Trifonov, E.N. Distribution of rare triplets along mRNA and their relation to protein folding. J. Biomol. Struct. Dyn. 20, 413–420 (2002).

    Article  CAS  Google Scholar 

  14. Murakami, A., Nakatogawa, H. & Ito, K. Translation arrest of SecM is essential for the basal and regulated expression of SecA. Proc. Natl. Acad. Sci. USA 101, 12330–12335 (2004).

    Article  CAS  Google Scholar 

  15. Wolin, S.L. & Walter, P. Discrete nascent chain lengths are required for the insertion of presecretory proteins into microsomal membranes. J. Cell Biol. 121, 1211–1219 (1993).

    Article  CAS  Google Scholar 

  16. Purvis, I.J. et al. The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis. J. Mol. Biol. 193, 413–417 (1987).

    Article  CAS  Google Scholar 

  17. Crombie, T., Swaffield, J.C. & Brown, A.J. Protein folding within the cell is influenced by controlled rates of polypeptide elongation. J. Mol. Biol. 228, 7–12 (1992).

    Article  CAS  Google Scholar 

  18. Komar, A.A., Lesnik, T. & Reiss, C. Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett. 462, 387–391 (1999).

    Article  CAS  Google Scholar 

  19. McClain, W.H. Transfer RNA identity. FASEB J. 7, 72–78 (1993).

    Article  CAS  Google Scholar 

  20. Curran, J.F. & Yarus, M. Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. J. Mol. Biol. 209, 65–77 (1989).

    Article  CAS  Google Scholar 

  21. Berks, B.C., Palmer, T. & Sargent, F. Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr. Opin. Microbiol. 8, 174–181 (2005).

    Article  CAS  Google Scholar 

  22. Driessen, A.J. & Nouwen, N. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77, 643–647 (2008).

    Article  CAS  Google Scholar 

  23. Chen, G.F. & Inouye, M. Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Res. 18, 1465–1473 (1990).

    Article  CAS  Google Scholar 

  24. Tarry, M. et al. The Escherichia coli division protein and model Tat substrate SufI (FtsP) localizes to the septaö ring and has a multi-copper oxidase-like structure. J. Mol. Biol. (in the press).

  25. Frank, J. et al. A model of the translational apparatus based on a three-dimensional reconstruction of the Escherichia coli ribosome. Biochem. Cell Biol. 73, 757–765 (1995).

    Article  CAS  Google Scholar 

  26. Hubbard, S.J. The structural aspects of limited proteolysis of native proteins. Biochim. Biophys. Acta 1382, 191–206 (1998).

    Article  CAS  Google Scholar 

  27. Deuerling, E., Schulze-Specking, A., Tomoyasu, T., Mogk, A. & Bukau, B. Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400, 693–696 (1999).

    Article  CAS  Google Scholar 

  28. Del Tito, B.J., Jr. et al. Effects of a minor isoleucyl tRNA on heterologous protein translation in Escherichia coli. J. Bacteriol. 177, 7086–7091 (1995).

    Article  CAS  Google Scholar 

  29. DeLisa, M.P., Tullman, D. & Georgiou, G. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc. Natl. Acad. Sci. USA 100, 6115–6120 (2003).

    Article  CAS  Google Scholar 

  30. Fedorov, A.N. & Baldwin, T.O. Cotranslational protein folding. J. Biol. Chem. 272, 32715–32718 (1997).

    Article  CAS  Google Scholar 

  31. Maity, H., Maity, M., Krishna, M.M., Mayne, L. & Englander, S.W. Protein folding: the stepwise assembly of foldon units. Proc. Natl. Acad. Sci. USA 102, 4741–4746 (2005).

    Article  CAS  Google Scholar 

  32. Frydman, J., Erdjument-Bromage, H., Tempst, P. & Hartl, F.U. Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat. Struct. Biol. 6, 697–705 (1999).

    Article  CAS  Google Scholar 

  33. Netzer, W.J. & Hartl, F.U. Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 388, 343–349 (1997).

    Article  CAS  Google Scholar 

  34. Komar, A.A., Kommer, A., Krasheninnikov, I.A. & Spirin, A.S. Cotranslational folding of globin. J. Biol. Chem. 272, 10646–10651 (1997).

    Article  CAS  Google Scholar 

  35. Nicola, A.V., Chen, W. & Helenius, A. Co-translational folding of an alphavirus capsid protein in the cytosol of living cells. Nat. Cell Biol. 1, 341–345 (1999).

    Article  CAS  Google Scholar 

  36. Kolb, V.A., Makeyev, E.V. & Spirin, A.S. Co-translational folding of an eukaryotic multidomain protein in a prokaryotic translation system. J. Biol. Chem. 275, 16597–16601 (2000).

    Article  CAS  Google Scholar 

  37. Fedorov, A.N., Friguet, B., Djavadi-Ohaniance, L., Alakhov, Y.B. & Goldberg, M.E. Folding on the ribosome of Escherichia coli tryptophan synthase β subunit nascent chains probed with a conformation-dependent monoclonal antibody. J. Mol. Biol. 228, 351–358 (1992).

    Article  CAS  Google Scholar 

  38. Hubbard, S.J. & Argos, P. A functional role for protein cavities in domain: domain motions. J. Mol. Biol. 261, 289–300 (1996).

    Article  CAS  Google Scholar 

  39. Kolker, E. & Trifonov, E.N. Periodic recurrence of methionines: fossil of gene fusion? Proc. Natl. Acad. Sci. USA 92, 557–560 (1995).

    Article  CAS  Google Scholar 

  40. Trifonov, E.N. Segmented structure of protein sequences and early evolution of genome by combinatorial fusion of DNA elements. J. Mol. Evol. 40, 337–342 (1995).

    Article  CAS  Google Scholar 

  41. Kurland, C.G. & Ehrenberg, M. Growth-optimizing accuracy of gene expression. Annu. Rev. Biophys. Biophys. Chem. 16, 291–317 (1987).

    Article  CAS  Google Scholar 

  42. Engelman, D.M. et al. Membrane protein folding: beyond the two stage model. FEBS Lett. 555, 122–125 (2003).

    Article  CAS  Google Scholar 

  43. Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  Google Scholar 

  44. Johnson, A.E. The co-translational folding and interactions of nascent protein chains: a new approach using fluorescence resonance energy transfer. FEBS Lett. 579, 916–920 (2005).

    Article  CAS  Google Scholar 

  45. Sorensen, M.A. & Pedersen, S. Absolute in vivo translation rates of individual codons in Escherichia coli. The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate. J. Mol. Biol. 222, 265–280 (1991).

    Article  CAS  Google Scholar 

  46. Evans, M.S., Ugrinov, K.G., Frese, M.A. & Clark, P.L. Homogeneous stalled ribosome nascent chain complexes produced in vivo or in vitro. Nat. Methods 2, 757–762 (2005).

    Article  CAS  Google Scholar 

  47. Stewart, M.L., Grollman, A.P. & Huang, M.T. Aurintricarboxylic acid: inhibitor of initiation of protein synthesis. Proc. Natl. Acad. Sci. USA 68, 97–101 (1971).

    Article  CAS  Google Scholar 

  48. Woolhead, C.A., Johnson, A.E. & Bernstein, H.D. Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. Mol. Cell 22, 587–598 (2006).

    Article  CAS  Google Scholar 

  49. Cayama, E. et al. New chromatographic and biochemical strategies for quick preparative isolation of tRNA. Nucleic Acids Res. 28, e64 (2000).

    Article  CAS  Google Scholar 

  50. Tian, H., Boyd, D. & Beckwith, J. A mutant hunt for defects in membrane protein assembly yields mutations affecting the bacterial signal recognition particle and Sec machinery. Proc. Natl. Acad. Sci. USA 97, 4730–4735 (2000).

    Article  CAS  Google Scholar 

  51. Ignatova, Z., Hornle, C., Nurk, A. & Kasche, V. Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat translocation machinery. Biochem. Biophys. Res. Commun. 291, 146–149 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Hayer-Hartl and U. Hartl and their groups (Max-Planck-Institute, Martinsried) for fruitful discussions, T. Palmer (University of Dundee) for providing SufI wild-type DNA and B. Berks (University of Oxford) for sharing unpublished data on the crystal structure of SufI, which was enormously helpful for our interpretations. We thank S. Arvidsson and B. Müller-Röber (University of Potsdam) for help with the RT-PCR. This work is supported by the Deutsche Forschungsgemeinschaft (Heisenberg award to Z.I. and IG73/4-1) and a Katholischer Akademischer Ausländer-Dienst fellowship to G.Z.

Author information

Authors and Affiliations

Authors

Contributions

G.Z. and Z.I. designed the experiments and analyzed the results; G.Z. carried out the experiments, wrote the program for the genome-wide search and prepared manuscript figures; M.H. carried out the in vivo experiments; Z.I. wrote the manuscript and supervised the project; all authors read and made contributions to the final manuscript.

Corresponding author

Correspondence to Zoya Ignatova.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Methods (PDF 562 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Hubalewska, M. & Ignatova, Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol 16, 274–280 (2009). https://doi.org/10.1038/nsmb.1554

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1554

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing