Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MIA40 is an oxidoreductase that catalyzes oxidative protein folding in mitochondria

Abstract

MIA40 has a key role in oxidative protein folding in the mitochondrial intermembrane space. We present the solution structure of human MIA40 and its mechanism as a catalyst of oxidative folding. MIA40 has a 66-residue folded domain made of an α-helical hairpin core stabilized by two structural disulfides and a rigid N-terminal lid, with a characteristic CPC motif that can donate its disulfide bond to substrates. The CPC active site is solvent-accessible and sits adjacent to a hydrophobic cleft. Its second cysteine (Cys55) is essential in vivo and is crucial for mixed disulfide formation with the substrate. The hydrophobic cleft functions as a substrate binding domain, and mutations of this domain are lethal in vivo and abrogate binding in vitro. MIA40 represents a thioredoxin-unrelated, minimal oxidoreductase, with a facile CPC redox active site that ensures its catalytic function in oxidative folding in mitochondria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MIA40 is functionally active in binding substrates.
Figure 2: The redox and structural properties of the CPC intramolecular disulfide bonds of human MIA40.
Figure 3: Redox potential of the CPC redox active site.
Figure 4: MIA40 is substantially unstructured at its N and C termini.
Figure 5: The solution structure of MIA402S-S.
Figure 6: Interaction of MIA40 with substrates.
Figure 7: The second cysteine, Cys55, of the active-site CPC is essential in vivo and in vitro.
Figure 8: Model for the interaction of MIA40 with its substrates.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

GenBank/EMBL/DDBJ

References

  1. Gruber, C.W., Cemazar, M., Heras, B., Martin, J.L. & Craik, D.J. Protein disulphide isomerase: the structure of oxidative folding. Trends Biochem. Sci. 31, 455–464 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Hatahet, F. & Ruddock, L.W. Substrate recognition by the protein disulfide isomerases. FEBS J. 274, 5223–5234 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Sevier, C.S. & Kaiser, C.A. Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim. Biophys. Acta 1783, 549–556 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Collet, J.F. & Bardwell, J.C. Oxidative protein folding in bacteria. Mol. Microbiol. 44, 1–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Kadokura, H., Katzen, F. & Beckwith, J. Protein disulfide bond formation in prokaryotes. Annu. Rev. Biochem. 72, 111–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Nakamoto, H. & Bardwell, J.C. Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochim. Biophys. Acta 1694, 111–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Chacinska, A. et al. Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J. 23, 3735–3746 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu, H., Allen, S., Wardleworth, L., Savory, P. & Tokatlidis, K. Functional TIM10 chaperone assembly is redox-regulated in vivo. J. Biol. Chem. 279, 18952–18958 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Mesecke, N. et al. A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121, 1059–1069 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Tokatlidis, K. A disulfide relay system in mitochondria. Cell 121, 965–967 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Allen, S., Balabanidou, V., Sideris, D.P., Lisowsky, T. & Tokatlidis, K. Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. J. Mol. Biol. 353, 937–944 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Bihlmaier, K. et al. The disulfide relay system of mitochondria is connected to the respiratory chain. J. Cell Biol. 179, 389–395 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dabir, D.V. et al. A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1. EMBO J. 26, 4801–4811 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rissler, M. et al. The essential mitochondrial protein Erv1 cooperates with Mia40 in biogenesis of intermembrane space proteins. J. Mol. Biol. 353, 485–492 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Naoe, M. et al. Identification of Tim40 that mediates protein sorting to the mitochondrial intermembrane space. J. Biol. Chem. 279, 47815–47821 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Terziyska, N. et al. Mia40, a novel factor for protein import into the intermembrane space of mitochondria is able to bind metal ions. FEBS Lett. 579, 179–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Hofmann, S. et al. Functional and mutational characterization of human MIA40 acting during import into the mitochondrial intermembrane space. J. Mol. Biol. 353, 517–528 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Gabriel, K. et al. Novel mitochondrial intermembrane space proteins as substrates of the MIA import pathway. J. Mol. Biol. 365, 612–620 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Cobine, P.A., Pierrel, F. & Winge, D.R. Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochim. Biophys. Acta 1763, 759–772 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Banci, L. et al. Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer. Proc. Natl. Acad. Sci. USA 105, 6803–6808 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Banci, L. et al. Modeling protein-protein complexes involved in the cytochrome c oxidase copper-delivery pathway. J. Proteome Res. 6, 1530–1539 (2007).

    Article  PubMed  Google Scholar 

  22. Bauer, M.F., Hofmann, S., Neupert, W. & Brunner, M. Protein translocation into mitochondria: the role of TIM complexes. Trends Cell Biol. 10, 25–31 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Endres, M., Neupert, W. & Brunner, M. Transport of the ADP/ATP carrier of mitochondria from the TOM complex to the TIM22.54 complex. EMBO J. 18, 3214–3221 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vial, S. et al. Assembly of Tim9 and Tim10 into a functional chaperone. J. Biol. Chem. 277, 36100–36108 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Sevier, C.S. & Kaiser, C.A. Conservation and diversity of the cellular disulfide bond formation pathways. Antioxid. Redox Signal. 8, 797–811 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Tu, B.P. & Weissman, J.S. Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 164, 341–346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilkinson, B. & Gilbert, H.F. Protein disulfide isomerase. Biochim. Biophys. Acta 1699, 35–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Milenkovic, D. et al. Biogenesis of the essential Tim9-Tim10 chaperone complex of mitochondria: site-specific recognition of cysteine residues by the intermembrane space receptor Mia40. J. Biol. Chem. 282, 22472–22480 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Muller, J.M., Milenkovic, D., Guiard, B., Pfanner, N. & Chacinska, A. Precursor oxidation by Mia40 and Erv1 promotes vectorial transport of proteins into the mitochondrial intermembrane space. Mol. Biol. Cell 19, 226–236 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sideris, D.P. & Tokatlidis, K. Oxidative folding of small Tims is mediated by site-specific docking onto Mia40 in the mitochondrial intermembrane space. Mol. Microbiol. 65, 1360–1373 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Webb, C.T., Gorman, M.A., Lazarou, M., Ryan, M.T. & Gulbis, J.M. Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed α-propeller. Mol. Cell 21, 123–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Sharma, D. & Rajarathnam, K. 13C NMR chemical shifts can predict disulfide bond formation. J. Biomol. NMR 18, 165–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Grumbt, B., Stroobant, V., Terziyska, N., Israel, L. & Hell, K. Functional characterization of Mia40p, the central component of the disulfide relay system of the mitochondrial intermembrane space. J. Biol. Chem. 282, 37461–37470 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Wishart, D.S. & Sykes, B.D. The 13C chemical shift index: a simple method for the identification of protein secondary structure using 13C chemical shift data. J. Biomol. NMR 4, 171–180 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Dominguez, C., Boelens, R. & Bonvin, A.M. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Banci, L. et al. A structural-dynamical characterization of human Cox17. J. Biol. Chem. 283, 7912–7920 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Kadokura, H., Tian, H., Zander, T., Bardwell, J.C. & Beckwith, J. Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science 303, 534–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Qin, J., Clore, G.M., Kennedy, W.P., Kuszewski, J. & Gronenborn, A.M. The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal. Structure 4, 613–620 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Keller, R. The Computer Aided Resonance Assignment Tutorial (Cantina, Goldau, 2004).

    Google Scholar 

  40. Guntert, P. Automatd NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378 (2004).

    CAS  PubMed  Google Scholar 

  41. Herrmann, T., Güntert, P. & Wüthrich, K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Herrmann, T., Güntert, P. & Wüthrich, K. Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR 24, 171–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Eghbalnia, H.R., Wang, L., Bahrani, A., Assadi, A. & Markley, J.L. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements. J. Biomol. NMR 32, 71–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Case, D.A. et al. AMBER 8.0, (San Francisco, CA, University of California 2004).

  45. Laskowski, R.A., Rullmann, J.A.C., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Vriend, G. WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8, 52–56 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Farrow, N.A. et al. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Grzesiek, S. & Bax, A. The importance of not saturating H2O in protein NMR. Application to sensitivity enhancement and NOE measurements. J. Am. Chem. Soc. 115, 12593–12594 (1993).

    Article  CAS  Google Scholar 

  49. Schagger, H. & Von Jagow, G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 199, 223–231 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Banci, L. et al. Human Sco1 functional studies and pathological implications of the P174L mutant. Proc. Natl. Acad. Sci. USA 104, 15–20 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Makris (Mediterranean Agronomic Institute of Chania, Crete) for the plasmid M4801, N. Pfanner (University of Freiburg) for the porin SP6 plasmid, N. Petrakis (K.T. laboratory, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology (IMBB-FORTH)) for help with the use of the Chimera software used in Figure 5, A. Hatzi (K.T. group, IMBB-FORTH) for some help with part of the mutagenesis and T. Economou (IMBB-FORTH) and T. Pugsley (Institut Pasteur) for comments on the manuscript. This work was supported by European Network of Research Infrastructures for Providing Access and Technological Advancements in Bio-NMR Contract 026145, by the SPINE II-COMPLEXES Contract, LSHG-CT-2006-031220 “From Receptor to Gene: Structures of Complexes from Signalling Pathways Linking Immunology, Neurobiology and Cancer,” and by funds from IMBB-FORTH, the University of Crete and the European Social Fund and National Resources (to K.T.). D.P.S. was supported by a PENED grant. This work was also supported in part by the Italian MIUR-FIRB (Fondo per gli Investimenti della Ricerca di Base, Grant protocollo, MIUR-RBLA032ZM7). Molecular graphics images were produced using the UCSF Chimera package50 from the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by the US National Institutes of Health grant P41 RR-01081).

Author information

Authors and Affiliations

Authors

Contributions

I.B. and L.B. planned the research, discussed and guided the flow of experiments and coordinated the writing of the text, to which all the co-authors contributed; M.M. and C.C. coordinated and performed protein production and characterization; A.G. solved the MIA402S-S NMR structure; S.C.-B. planned and recorded the NMR spectra and coordinated the titration experiments; D.P.S. performed the in vivo and in vitro mutational analysis and interactions and analyzed data; N.K. provided technical support; K.T. designed experiments, analyzed data and coordinated the presentation of the data and the writing of the paper.

Corresponding authors

Correspondence to Ivano Bertini or Kostas Tokatlidis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 2140 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banci, L., Bertini, I., Cefaro, C. et al. MIA40 is an oxidoreductase that catalyzes oxidative protein folding in mitochondria. Nat Struct Mol Biol 16, 198–206 (2009). https://doi.org/10.1038/nsmb.1553

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1553

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing