Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural characterization of Tip20p and Dsl1p, subunits of the Dsl1p vesicle tethering complex

Abstract

Multisubunit tethering complexes are essential for intracellular trafficking and have been proposed to mediate the initial interaction between vesicles and the membranes with which they fuse. Here we report initial structural characterization of the Dsl1p complex, whose three subunits are essential for trafficking from the Golgi apparatus to the endoplasmic reticulum (ER). Crystal structures reveal that two of the three subunits, Tip20p and Dsl1p, resemble known subunits of the exocyst complex, establishing a structural connection among several multisubunit tethering complexes and implying that many of their subunits are derived from a common progenitor. We show, moreover, that Tip20p and Dsl1p interact directly via N-terminal α-helices. Finally, we establish that different Dsl1p complex subunits bind independently to different ER SNARE proteins. Our results map out two alternative protein-interaction networks capable of tethering COPI-coated vesicles, via the Dsl1p complex, to ER membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray crystal structures of S. cerevisiae Dsl1p complex subunits.
Figure 2: The Tip20p and Dsl1p subunits of the Dsl1p complex form stoichiometric heterodimers.
Figure 3: Structural and biochemical characterization of the Tip20p–Dsl1p interaction.
Figure 4: Reconstitution of the heterotrimeric Dsl1p complex.
Figure 5: ER SNAREs Sec20p and Use1p bind Dsl1p complex via different subunits.
Figure 6: Schematic model for the tethering of Golgi-derived retrograde trafficking vesicles to the ER via bivalent attachment of the Dsl1p complex to the ER SNAREs Use1p and Sec20p.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Pfeffer, S.R. Unsolved mysteries in membrane traffic. Annu. Rev. Biochem. 76, 629–645 (2007).

    Article  CAS  Google Scholar 

  2. Grosshans, B.L., Ortiz, D. & Novick, P. Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl. Acad. Sci. USA 103, 11821–11827 (2006).

    Article  CAS  Google Scholar 

  3. Pfeffer, S.R. Transport-vesicle targeting: tethers before SNAREs. Nat. Cell Biol. 1, E17–E22 (1999).

    Article  CAS  Google Scholar 

  4. Cai, H., Reinisch, K. & Ferro-Novick, S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12, 671–682 (2007).

    Article  CAS  Google Scholar 

  5. Gillingham, A.K. & Munro, S. Long coiled-coil proteins and membrane traffic. Biochim. Biophys. Acta 1641, 71–85 (2003).

    Article  CAS  Google Scholar 

  6. Whyte, J.R. & Munro, S. Vesicle tethering complexes in membrane traffic. J. Cell Sci. 115, 2627–2637 (2002).

    CAS  PubMed  Google Scholar 

  7. Sztul, E. & Lupashin, V. Role of tethering factors in secretory membrane traffic. Am. J. Physiol. Cell Physiol. 290, C11–C26 (2006).

    Article  CAS  Google Scholar 

  8. Sato, T.K., Rehling, P., Peterson, M.R., Emr, S.D. & Class, C. Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Mol. Cell 6, 661–671 (2000).

    Article  CAS  Google Scholar 

  9. Seals, D.F., Eitzen, G., Margolis, N., Wickner, W.T. & Price, A.A. Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc. Natl. Acad. Sci. USA 97, 9402–9407 (2000).

    Article  CAS  Google Scholar 

  10. Kraynack,, B.A. et al. Dsl1p, Tip20p, and the novel Dsl3(Sec39) protein are required for the stability of the Q/t-SNARE complex at the endoplasmic reticulum in yeast. Mol. Biol. Cell 16, 3963–3977 (2005).

    Article  CAS  Google Scholar 

  11. Shestakova, A., Suvorova, E., Pavliv, O., Khaidakova, G. & Lupashin, V. Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J. Cell Biol. 179, 1179–1192 (2007).

    Article  CAS  Google Scholar 

  12. Cai, H. et al. TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445, 941–944 (2007).

    Article  CAS  Google Scholar 

  13. Sacher, M. et al. TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J. 17, 2494–2503 (1998).

    Article  CAS  Google Scholar 

  14. Kim, Y.G. et al. The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering. Cell 127, 817–830 (2006).

    Article  CAS  Google Scholar 

  15. Terbush, D.R., Maurice, T., Roth, D. & Novick, P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494 (1996).

    Article  CAS  Google Scholar 

  16. Ungar, D. et al. Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J. Cell Biol. 157, 405–415 (2002).

    Article  CAS  Google Scholar 

  17. Dong, G., Hutagalung, A.H., Fu, C., Novick, P. & Reinisch, K.M. The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat. Struct. Mol. Biol. 12, 1094–1100 (2005).

    Article  CAS  Google Scholar 

  18. Hamburger, Z.A., Hamburger, A.E., West, A.P., Jr & Weis, W.I. Crystal structure of the S. cerevisiae exocyst component Exo70p. J. Mol. Biol. 356, 9–21 (2006).

    Article  CAS  Google Scholar 

  19. Moore, B.A., Robinson, H.H. & Xu, Z. The crystal structure of mouse Exo70 reveals unique features of the mammalian exocyst. J. Mol. Biol. 371, 410–421 (2007).

    Article  CAS  Google Scholar 

  20. Sivaram, M.V., Furgason, M.L., Brewer, D.N. & Munson, M. The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles. Nat. Struct. Mol. Biol. 13, 555–556 (2006).

    Article  CAS  Google Scholar 

  21. Wu, S., Mehta, S.Q., Pichaud, F., Bellen, H.J. & Quiocho, F.A. Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat. Struct. Mol. Biol. 12, 879–885 (2005).

    Article  CAS  Google Scholar 

  22. Cavanaugh, L.F. et al. Structural analysis of conserved oligomeric Golgi complex subunit 2. J. Biol. Chem. 282, 23418–23426 (2007).

    Article  CAS  Google Scholar 

  23. Koumandou, V.L., Dacks, J.B., Coulson, R.M. & Field, M.C. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol. Biol. 7, 29 (2007).

    Article  Google Scholar 

  24. Whyte, J.R. & Munro, S. The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell 1, 527–537 (2001).

    Article  CAS  Google Scholar 

  25. Andag, U., Neumann, T. & Schmitt, H.D. The coatomer-interacting protein Dsl1p is required for Golgi-to-endoplasmic reticulum retrieval in yeast. J. Biol. Chem. 276, 39150–39160 (2001).

    Article  CAS  Google Scholar 

  26. Reilly, B.A., Kraynack, B.A., VanRheenen, S.M. & Waters, M.G. Golgi-to-endoplasmic reticulum (ER) retrograde traffic in yeast requires Dsl1p, a component of the ER target site that interacts with a COPI coat subunit. Mol. Biol. Cell 12, 3783–3796 (2001).

    Article  CAS  Google Scholar 

  27. Sweet, D.J. & Pelham, H.R. The TIP1 gene of Saccharomyces cerevisiae encodes an 80 kDa cytoplasmic protein that interacts with the cytoplasmic domain of Sec20p. EMBO J. 12, 2831–2840 (1993).

    Article  CAS  Google Scholar 

  28. VanRheenen, S.M., Reilly, B.A., Chamberlain, S.J. & Waters, M.G. Dsl1p, an essential protein required for membrane traffic at the endoplasmic reticulum/Golgi interface in yeast. Traffic 2, 212–231 (2001).

    Article  CAS  Google Scholar 

  29. Kamena, F. & Spang, A. Tip20p prohibits back-fusion of COPII vesicles with the endoplasmic reticulum. Science 304, 286–289 (2004).

    Article  CAS  Google Scholar 

  30. Andag, U. & Schmitt, H.D. Dsl1p, an essential component of the Golgi-endoplasmic reticulum retrieval system in yeast, uses the same sequence motif to interact with different subunits of the COPI vesicle coat. J. Biol. Chem. 278, 51722–51734 (2003).

    Article  CAS  Google Scholar 

  31. Frigerio, G. The Saccharomyces cerevisiae early secretion mutant tip20 is synthetic lethal with mutants in yeast coatomer and the SNARE proteins Sec22p and Ufe1p. Yeast 14, 633–646 (1998).

    Article  CAS  Google Scholar 

  32. Mnaimneh, S. et al. Exploration of essential gene functions via titratable promoter alleles. Cell 118, 31–44 (2004).

    Article  CAS  Google Scholar 

  33. Sweet, D.J. & Pelham, H.R. The Saccharomyces cerevisiae SEC20 gene encodes a membrane glycoprotein which is sorted by the HDEL retrieval system. EMBO J. 11, 423–432 (1992).

    Article  CAS  Google Scholar 

  34. Novick, P., Ferro, S. & Schekman, R. Order of events in the yeast secretory pathway. Cell 25, 461–469 (1981).

    Article  CAS  Google Scholar 

  35. Burri, L. et al. A SNARE required for retrograde transport to the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 100, 9873–9877 (2003).

    Article  CAS  Google Scholar 

  36. Dilcher, M. et al. Use1p is a yeast SNARE protein required for retrograde traffic to the ER. EMBO J. 22, 3664–3674 (2003).

    Article  CAS  Google Scholar 

  37. Pashkova, N., Jin, Y., Ramaswamy, S. & Weisman, L.S. Structural basis for myosin V discrimination between distinct cargoes. EMBO J. 25, 693–700 (2006).

    Article  CAS  Google Scholar 

  38. Schott, D., Ho, J., Pruyne, D. & Bretscher, A. The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J. Cell Biol. 147, 791–808 (1999).

    Article  CAS  Google Scholar 

  39. Sivaram, M.V., Saporita, J.A., Furgason, M.L., Boettcher, A.J. & Munson, M. Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p. Biochemistry 44, 6302–6311 (2005).

    Article  CAS  Google Scholar 

  40. Munson, M. & Novick, P. The exocyst defrocked, a framework of rods revealed. Nat. Struct. Mol. Biol. 13, 577–581 (2006).

    Article  CAS  Google Scholar 

  41. Zhang, X. et al. Membrane association and functional regulation of Sec3 by phospholipids and Cdc42. J. Cell Biol. 180, 145–158 (2008).

    Article  CAS  Google Scholar 

  42. Ungar, D., Oka, T., Krieger, M. & Hughson, F.M. Retrograde transport on the COG railway. Trends Cell Biol. 16, 113–120 (2006).

    Article  CAS  Google Scholar 

  43. Scheich, C., Kummel, D., Soumailakakis, D., Heinemann, U. & Bussow, K. Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res. 35, e43 (2007).

    Article  Google Scholar 

  44. Doublié, S. Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276, 523–530 (1997).

    Article  Google Scholar 

  45. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  46. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  47. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr. 59, 2023–2030 (2003).

    Article  CAS  Google Scholar 

  48. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  49. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  50. Brunger, A.T. et al. Crystallography & NMR System (CNS): a new software system for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  51. Lovell, S.C. et al. Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 50, 437–450 (2003).

    Article  CAS  Google Scholar 

  52. Murshudov, G.N. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  53. Storoni, L.C., McCoy, A.J. & Read, R.J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D Biol. Crystallogr. 60, 432–438 (2004).

    Article  Google Scholar 

  54. Holm, L. & Park, J. DaliLite workbench for protein structure comparison. Bioinformatics 16, 566–567 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge B. Kokona and R. Fairman for sedimentation velocity analytical ultracentrifugation; the staff of the National Synchrotron Light Source X25 and X29 beamlines for assistance with X-ray data collection; O. Perisic for advice on crystallization; M. Diefenbacher and A. Spang for many fruitful discussions and for communicating results before publication; K. Büssow (Max Planck Institute for Molecular Genetics, Berlin) for reagents; and S. Munro, M. Munson, A. Spang and members of the Hughson laboratory for critical comments on the manuscript. This work was supported by the US National Institutes of Health grant GM071574.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick M Hughson.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 928 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, A., Ren, Y., Jeffrey, P. et al. Structural characterization of Tip20p and Dsl1p, subunits of the Dsl1p vesicle tethering complex. Nat Struct Mol Biol 16, 114–123 (2009). https://doi.org/10.1038/nsmb.1548

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing