Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The mechanism of pentabromopseudilin inhibition of myosin motor activity

Abstract

We have identified pentabromopseudilin (PBP) as a potent inhibitor of myosin-dependent processes such as isometric tension development and unloaded shortening velocity. PBP-induced reductions in the rate constants for ATP binding, ATP hydrolysis and ADP dissociation extend the time required per myosin ATPase cycle in the absence and presence of actin. Additionally, coupling between the actin and nucleotide binding sites is reduced in the presence of the inhibitor. The selectivity of PBP differs from that observed with other myosin inhibitors. To elucidate the binding mode of PBP, we crystallized the Dictyostelium myosin-2 motor domain in the presence of Mg2+-ADP–meta-vanadate and PBP. The electron density for PBP is unambiguous and shows PBP to bind at a previously unknown allosteric site near the tip of the 50-kDa domain, at a distance of 16 Å from the nucleotide binding site and 7.5 Å away from the blebbistatin binding pocket.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of myosin functions by PBP.
Figure 2: Structure of the myosin-2 motor domain in complex with PBP and Mg2+-ADP–meta-vanadate.
Figure 3: PBP binding site and contact residue conservation for different myosin isoforms.
Figure 4: Sc Myo2p-dependent changes in mitochondrial morphology.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Sokac, A.M., Schietroma, C., Gundersen, C.B. & Bement, W.M. Myosin-1c couples assembling actin to membranes to drive compensatory endocytosis. Dev. Cell 11, 629–640 (2006).

    Article  CAS  Google Scholar 

  2. Arden, S.D., Puri, C., Au, J.S., Kendrick-Jones, J. & Buss, F. Myosin VI is required for targeted membrane transport during cytokinesis. Mol. Biol. Cell 18, 4750–4761 (2007).

    Article  CAS  Google Scholar 

  3. Zhang, H. et al. Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat. Cell Biol. 6, 523–531 (2004).

    Article  Google Scholar 

  4. Cavellan, E., Asp, P., Percipalle, P. & Farrants, A.K. The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription. J. Biol. Chem. 281, 16264–16271 (2006).

    Article  CAS  Google Scholar 

  5. van den Boom, F., Dussmann, H., Uhlenbrock, K., Abouhamed, M. & Bahler, M. The Myosin IXb motor activity targets the myosin IXb RhoGAP domain as cargo to sites of actin polymerization. Mol. Biol. Cell 18, 1507–1518 (2007).

    Article  CAS  Google Scholar 

  6. Weber, K.L., Sokac, A.M., Berg, J.S., Cheney, R.E. & Bement, W.M. A microtubule binding myosin required for nuclear anchoring and spindle assembly. Nature 431, 325–329 (2004).

    Article  CAS  Google Scholar 

  7. Ohri, R.V. et al. A Re(V)-catalyzed C-N bond-forming route to human lipoxygenase inhibitors. Org. Lett. 7, 2501–2504 (2005).

    Article  CAS  Google Scholar 

  8. Burkholder, P.R., Pfister, R.M. & Leitz, F.H. Production of a pyrrole antibiotic by a marine bacterium. Appl. Microbiol. 14, 649–653 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Taft, M.H. et al. Dictyostelium myosin-5b is a conditional processive motor. J. Biol. Chem. 283, 26902–26910 (2008).

    Article  CAS  Google Scholar 

  10. Hiratsuka, T. Fluorescence properties of 2′ (or 3′)-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate and its use in the study of binding to heavy meromyosin ATPase. Biochim. Biophys. Acta 453, 293–297 (1976).

    Article  CAS  Google Scholar 

  11. Webb, M.R. A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc. Natl. Acad. Sci. USA 89, 4884–4887 (1992).

    Article  CAS  Google Scholar 

  12. Malnasi-Csizmadia, A., Kovacs, M., Woolley, R.J., Botchway, S.W. & Bagshaw, C.R. The dynamics of the relay loop tryptophan residue in the Dictyostelium myosin motor domain and the origin of spectroscopic signals. J. Biol. Chem. 276, 19483–19490 (2001).

    Article  CAS  Google Scholar 

  13. Geeves, M.A., Fedorov, R. & Manstein, D.J. Molecular mechanism of actomyosin-based motility. Cell. Mol. Life Sci. 62, 1462–1477 (2005).

    Article  CAS  Google Scholar 

  14. Brenner, B., Yu, L.C., Greene, L.E., Eisenberg, E. & Schoenberg, M. Ca2+-sensitive cross-bridge dissociation in the presence of magnesium pyrophosphate in skinned rabbit psoas fibers. Biophys. J. 50, 1101–1108 (1986).

    Article  CAS  Google Scholar 

  15. Dominguez, R., Freyzon, Y., Trybus, K.M. & Cohen, C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 (1998).

    Article  CAS  Google Scholar 

  16. Sasaki, N., Ohkura, R. & Sutoh, K. Insertion or deletion of a single residue in the strut sequence of Dictyostelium myosin II abolishes strong binding to actin. J. Biol. Chem. 275, 38705–38709 (2000).

    Article  CAS  Google Scholar 

  17. Boldogh, I.R., Ramcharan, S.L., Yang, H.C. & Pon, L.A. A type V myosin (Myo2p) and a Rab-like G-protein (Ypt11p) are required for retention of newly inherited mitochondria in yeast cells during cell division. Mol. Biol. Cell 15, 3994–4002 (2004).

    Article  CAS  Google Scholar 

  18. Itoh, T., Watabe, A., Toh, E.A. & Matsui, Y. Complex formation with Ypt11p, a Rab-type small GTPase, is essential to facilitate the function of Myo2p, a class V myosin, in mitochondrial distribution in Saccharomyces cerevisiae. Mol. Cell. Biol. 22, 7744–7757 (2002).

    Article  CAS  Google Scholar 

  19. Shepard, K.A. et al. Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc. Natl. Acad. Sci. USA 100, 11429–11434 (2003).

    Article  CAS  Google Scholar 

  20. Simon, V.R., Swayne, T.C. & Pon, L.A. Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems: identification of a motor activity on the mitochondrial surface. J. Cell Biol. 130, 345–354 (1995).

    Article  CAS  Google Scholar 

  21. Goodson, H.V., Anderson, B.L., Warrick, H.M., Pon, L.A. & Spudich, J.A. Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): myosin I proteins are required for polarization of the actin cytoskeleton. J. Cell Biol. 133, 1277–1291 (1996).

    Article  CAS  Google Scholar 

  22. Lord, M., Laves, E. & Pollard, T.D. Cytokinesis depends on the motor domains of myosin-II in fission yeast but not in budding yeast. Mol. Biol. Cell 16, 5346–5355 (2005).

    Article  CAS  Google Scholar 

  23. Westermann, B. & Neupert, W. Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16, 1421–1427 (2000).

    Article  CAS  Google Scholar 

  24. Mnaimneh, S. et al. Exploration of essential gene functions via titratable promoter alleles. Cell 118, 31–44 (2004).

    Article  CAS  Google Scholar 

  25. Allingham, J.S., Smith, R. & Rayment, I. The structural basis of blebbistatin inhibition and specificity for myosin II. Nat. Struct. Mol. Biol. 12, 378–379 (2005).

    Article  CAS  Google Scholar 

  26. Cheung, A. et al. A small-molecule inhibitor of skeletal muscle myosin II. Nat. Cell Biol. 4, 83–88 (2002).

    Article  CAS  Google Scholar 

  27. Nyitrai, M. et al. What limits the velocity of fast-skeletal muscle contraction in mammals? J. Mol. Biol. 355, 432–442 (2006).

    Article  CAS  Google Scholar 

  28. Reubold, T.F., Eschenburg, S., Becker, A., Kull, F.J. & Manstein, D.J. A structural model for actin-induced nucleotide release in myosin. Nat. Struct. Biol. 10, 826–830 (2003).

    Article  CAS  Google Scholar 

  29. Coureux, P.D. et al. A structural state of the myosin V motor without bound nucleotide. Nature 425, 419–423 (2003).

    Article  CAS  Google Scholar 

  30. Reubold, T.F., Eschenburg, S., Becker, A., Kull, F.J. & Manstein, D.J. A structural model for actin-induced nucleotide release in myosin. Nat. Struct. Biol. 10, 826–830 (2003).

    Article  CAS  Google Scholar 

  31. Coureux, P.D. et al. A structural state of the myosin V motor without bound nucleotide. Nature 425, 419–423 (2003).

    Article  CAS  Google Scholar 

  32. Dunn, T.A. et al. A novel role of myosin VI in human prostate cancer. Am. J. Pathol. 169, 1843–1854 (2006).

    Article  CAS  Google Scholar 

  33. Tavares, M., Rezlan, E., Vostroknoutova, I., Khouadja, H. & Mebazaa, A. New pharmacologic therapies for acute heart failure. Crit. Care Med. 36, S112–S120 (2008).

    Article  CAS  Google Scholar 

  34. Green, J.L. et al. The MTIP-myosin A complex in blood stage malaria parasites. J. Mol. Biol. 355, 933–941 (2006).

    Article  CAS  Google Scholar 

  35. Manstein, D.J. & Hunt, D.M. Overexpression of myosin motor domains in Dictyostelium: screening of transformants and purification of the affinity tagged protein. J. Muscle Res. Cell Motil. 16, 325–332 (1995).

    Article  CAS  Google Scholar 

  36. Margossian, S.S. & Lowey, S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Meth. Enzymol. 85, B55–B71 (1982).

    Article  Google Scholar 

  37. Lehrer, S.S. & Kerwar, G. Intrinsic fluorescence of actin. Biochemistry 11, 1211–1217 (1972).

    Article  CAS  Google Scholar 

  38. Criddle, A.H., Geeves, M.A. & Jeffries, T. The use of actin labelled with N-(1-pyrenyl)iodoacetamide to study the interaction of actin with myosin subfragments and troponin/tropomyosin. Biochem. J. 232, 343–349 (1985).

    Article  CAS  Google Scholar 

  39. Agarwal, S. & Knölker, H.-J. A novel pyrrole synthesis. Org. Biomol. Chem. 2, 3060–3062 (2004).

    Article  CAS  Google Scholar 

  40. Furch, M., Geeves, M.A. & Manstein, D.J. Modulation of actin affinity and actomyosin adenosine triphosphatase by charge changes in the myosin motor domain. Biochemistry 37, 6317–6326 (1998).

    Article  CAS  Google Scholar 

  41. Batra, R., Geeves, M.A. & Manstein, D.J. Kinetic analysis of Dictyostelium discoideum myosin motor domains with glycine-to-alanine mutations in the reactive thiol region. Biochemistry 38, 6126–6134 (1999).

    Article  CAS  Google Scholar 

  42. Fujita-Becker, S. et al. Changes in Mg2+ ion concentration and heavy chain phosphorylation regulate the motor activity of a class I myosin. J. Biol. Chem. 280, 6064–6071 (2005).

    Article  CAS  Google Scholar 

  43. Fedorov, R., Witte, G., Urbanke, C., Manstein, D.J. & Curth, U. 3D structure of Thermus aquaticus single-stranded DNA-binding protein gives insight into the functioning of SSB proteins. Nucleic Acids Res. 34, 6708–6717 (2006).

    Article  CAS  Google Scholar 

  44. Brenner, B. Technique for stabilizing the striation pattern in maximally calcium-activated skinned rabbit psoas fibers. Biophys. J. 41, 99–102 (1983).

    Article  CAS  Google Scholar 

  45. Kraft, T. et al. Equilibration and exchange of fluorescently labeled molecules in skinned skeletal muscle fibers visualized by confocal microscopy. Biophys. J. 69, 1246–1258 (1995).

    Article  CAS  Google Scholar 

  46. Brenner, B. & Eisenberg, E. Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution. Proc. Natl. Acad. Sci. USA 83, 3542–3546 (1986).

    Article  CAS  Google Scholar 

  47. Brenner, B. Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction. Proc. Natl. Acad. Sci. USA 85, 3265–3269 (1988).

    Article  CAS  Google Scholar 

  48. Edman, K.A. The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J. Physiol. (Lond.) 291, 143–159 (1979).

    Article  CAS  Google Scholar 

  49. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  50. Schmidt, M.W. et al. The general atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Fujita-Becker (Max-Planck-Institute for Medical Research, Heidelberg), B. Westermann (University of Bayreuth), T. Scholz, A. Schweda (Hannover Medical School) A. Malnasi-Csizmadia and M. Kovacs (Eötvös Lorand University, Budapest), and C.R. Bagshaw (University of Leicester) for reagents; M.A. Geeves for discussions; C. Thiel, C. Wassmann, Y. Henker and L. Litz for excellent technical assistance. We are grateful to the staff of beamline EMBL X11 at the DORIS storage ring of DESY for their support.

Author information

Authors and Affiliations

Authors

Contributions

R.F. performed crystallization, structure determination and molecular modeling; M.B. performed the initial kinetic screening of the pseudilin derivatives and the yeast assays; G.T. supervised and codesigned the protein preparation, kinetic and in vitro motility assays, and performed the transient kinetic analysis with F.K.H. and M.H.T.; F.K.H. performed in vitro motility assays and steady-state analysis; M.H.T. performed transient kinetic experiments; P.B. crystallized the protein inhibitor complexes; B.B. designed and performed single-fiber experiments; R.M. synthesized PBP; H.-J.K. designed and supervised compound synthesis; H.O.G. designed and supervised the initial kinetic screening of PBP and the yeast assays; D.J.M. supervised kinetic analysis, crystallization and data collection, molecular modeling, in vitro motility analysis, advised on the design of the experiments, and wrote the manuscript with G.T., R.F., H.O.G., B.B. and H.-J.K.

Corresponding author

Correspondence to Dietmar J Manstein.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Methods (PDF 967 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, R., Böhl, M., Tsiavaliaris, G. et al. The mechanism of pentabromopseudilin inhibition of myosin motor activity. Nat Struct Mol Biol 16, 80–88 (2009). https://doi.org/10.1038/nsmb.1542

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1542

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing