Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural analysis of ion selectivity in the NaK channel

Abstract

Here we present a detailed characterization of ion binding in the NaK pore using the high-resolution structures of NaK in complex with various cations. These structures reveal four ion binding sites with similar chemical environments but vastly different ion preference. The most nonselective of all is site 3, which is formed exclusively by backbone carbonyl oxygen atoms and resides deep within the selectivity filter. Additionally, four water molecules in combination with four backbone carbonyl oxygen atoms are seen to participate in K+ and Rb+ ion chelation, at both the external entrance and the vestibule of the NaK filter, confirming the channel's preference for an octahedral ligand configuration for K+ and Rb+ binding. In contrast, Na+ binding in the NaK filter, particularly at site 4, utilizes a pyramidal ligand configuration that requires the participation of a water molecule in the cavity. Therefore, the ability of the NaK filter to bind both Na+ and K+ ions seemingly arises from the ions' ability to use the existing environment in unique ways, rather than from any structural rearrangements of the filter itself.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Na+ binding in the NaK filter.
Figure 2: K+ and Rb+ binding in the NaK selectivity filter.
Figure 3: Ca2+ binding in the NaK selectivity filter.
Figure 4: Ba2+ binding in NaK filter.
Figure 5: Comparison of the selectivity filter structures of NaK and KcsA and between various ion complexes of NaK.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hille, B. Ion Channels of Excitable Membranes. 3rd edn. (Sinauer, Sunderland, MA, 2001).

    Google Scholar 

  2. Long, S.B. et al. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007).

    Article  CAS  Google Scholar 

  3. Kuo, A. et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300, 1922–1926 (2003).

    Article  CAS  Google Scholar 

  4. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002).

    Article  CAS  Google Scholar 

  5. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003).

    Article  CAS  Google Scholar 

  6. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

  7. Nishida, M. et al. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J. 26, 4005–4015 (2007).

    Article  CAS  Google Scholar 

  8. Noskov, S.Y., Berneche, S. & Roux, B. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431, 830–834 (2004).

    Article  CAS  Google Scholar 

  9. Gouaux, E. & Mackinnon, R. Principles of selective ion transport in channels and pumps. Science 310, 1461–1465 (2005).

    Article  CAS  Google Scholar 

  10. Alam, A., Shi, N. & Jiang, Y. Structural insight into Ca2+ specificity in tetrameric cation channels. Proc. Natl. Acad. Sci. USA 104, 15334–15339 (2007).

    Article  CAS  Google Scholar 

  11. Shi, N. et al. Atomic structure of a Na+- and K+-conducting channel. Nature 440, 570–574 (2006).

    Article  CAS  Google Scholar 

  12. Alam, A. & Jiang, Y. High-resolution structure of the open NaK channel. Nat. Struct. Mol. Biol. advance online publication, doi: 10.1038/nsmb.1531 (21 December 2008).

  13. Phillips, K. et al. The crystal structure of a parallel-stranded guanine tetraplex at 0.95 resolution. J. Mol. Biol. 273, 171–182 (1997).

    Article  CAS  Google Scholar 

  14. Vora, T., Bisset, D. & Chung, S.H. Conduction of Na+ and K+ through the NaK channel: molecular and Brownian dynamics studies. Biophys. J. 95, 1600–1611 (2008).

    Article  CAS  Google Scholar 

  15. Noskov, S.Y. & Roux, B. Importance of hydration and dynamics on the selectivity of the KcsA and NaK channels. J. Gen. Physiol. 129, 135–143 (2007).

    Article  CAS  Google Scholar 

  16. Zhou, Y. et al. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 resolution. Nature 414, 43–48 (2001).

    Article  CAS  Google Scholar 

  17. Katz, A.K. et al. Calcium ion coordination: a comparison with that of beryllium, magnesium, and zinc. J. Am. Chem. Soc. 118, 5752–5763 (1996).

    Article  CAS  Google Scholar 

  18. Pidcock, E. & Moore, G.R. Structural characteristics of protein binding sites for calcium and lanthanide ions. J. Biol. Inorg. Chem. 6, 479–489 (2001).

    Article  CAS  Google Scholar 

  19. Lewit-Bentley, A. & Rety, S. EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol. 10, 637–643 (2000).

    Article  CAS  Google Scholar 

  20. Jiang, Y. & MacKinnon, R. The barium site in a potassium channel by X-ray crystallography. J. Gen. Physiol. 115, 269–272 (2000).

    Article  CAS  Google Scholar 

  21. Lockless, S.W., Zhou, M. & MacKinnon, R. Structural and thermodynamic properties of selective ion binding in a K+ channel. PLoS Biol. 5, e121 (2007).

    Article  Google Scholar 

  22. Varma, S. & Rempe, S.B. Coordination numbers of alkali metal ions in aqueous solutions. Biophys. Chem. 124, 192–199 (2006).

    Article  CAS  Google Scholar 

  23. Tongaarm, A., Liedl, K.R. & Rode, B.M. Born-Oppenheimer Ab Initio QM/MM dynamics simulations of Na+ and K+ in water: from structure making to structure breaking effects. J. Phys. Chem. A 102, 10340–10347 (1998).

    Article  Google Scholar 

  24. Neyton, J. & Miller, C. Potassium blocks barium permeation through a calcium-activated potassium channel. J. Gen. Physiol. 92, 549–567 (1988).

    Article  CAS  Google Scholar 

  25. Neyton, J. & Miller, C. Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+-activated K+ channel. J. Gen. Physiol. 92, 569–586 (1988).

    Article  CAS  Google Scholar 

  26. Armstrong, C.M., Swenson, R.P. Jr. & Taylor, S.R. Block of squid axon K channels by internally and externally applied barium ions. J. Gen. Physiol. 80, 663–682 (1982).

    Article  CAS  Google Scholar 

  27. Armstrong, C.M. & Taylor, S.R. Interaction of barium ions with potassium channels in squid giant axons. Biophys. J. 30, 473–488 (1980).

    Article  CAS  Google Scholar 

  28. Varma, S., Sabo, D. & Rempe, S.B. K+/Na+ selectivity in K channels and valinomycin: over-coordination versus cavity-size constraints. J. Mol. Biol. 376, 13–22 (2008).

    Article  CAS  Google Scholar 

  29. Varma, S. & Rempe, S.B. Tuning ion coordination architectures to enable selective partitioning. Biophys. J. 93, 1093–1099 (2007).

    Article  CAS  Google Scholar 

  30. Bostick, D.L. & Brooks, C.L. III. Selectivity in K+ channels is due to topological control of the permeant ion's coordinated state. Proc. Natl. Acad. Sci. USA 104, 9260–9265 (2007).

    Article  CAS  Google Scholar 

  31. Zhou, Y. & MacKinnon, R. The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333, 965–975 (2003).

    Article  CAS  Google Scholar 

  32. Valiyaveetil, F.I. et al. Ion selectivity in a semisynthetic K+ channel locked in the conductive conformation. Science 314, 1004–1007 (2006).

    Article  CAS  Google Scholar 

  33. Harding, M.M. Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium. Acta Crystallogr. D Biol. Crystallogr. 58, 872–874 (2002).

    Article  Google Scholar 

  34. Yeates, T.O. Detecting and overcoming crystal twinning. Methods Enzymol. 276, 344–358 (1997).

    Article  CAS  Google Scholar 

  35. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  36. Morais-Cabral, J.H., Zhou, Y. & MacKinnon, R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37–42 (2001).

    Article  CAS  Google Scholar 

  37. Kleywegt, G.J. & Jones, T.A. xdlMAPMAN and xdlDATAMAN—programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. Acta Crystallogr. D Biol. Crystallogr. 52, 826–828 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Use of the Argonne National Laboratory Structural Biology Center beamlines at the Advanced Photon Source was supported by the US Department of Energy, Office of Energy Research. We thank the beamline staff for assistance in data collection. This work was supported by Howard Hughes Medical Institute and by grants from the the US National Institutes of Health (NIH) and National Institute of General Medical Sciences (RO1 GM079179), the David and Lucile Packard Foundation and the McKnight Endowment for Neuroscience. A.A. was supported by NIH Training Grant T32 GM008297.

Author information

Authors and Affiliations

Authors

Contributions

A.A. performed the research. A.A. & Y.J. designed the research, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Youxing Jiang.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 2590 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, A., Jiang, Y. Structural analysis of ion selectivity in the NaK channel. Nat Struct Mol Biol 16, 35–41 (2009). https://doi.org/10.1038/nsmb.1537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1537

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing