Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid evolution of protein kinase PKR alters sensitivity to viral inhibitors

Abstract

Protein kinase PKR (also known as EIF2AK2) is activated during viral infection and phosphorylates the α subunit of eukaryotic translation initiation factor 2 (eIF2), leading to inhibition of translation and viral replication. We report fast evolution of the PKR kinase domain in vertebrates, coupled with positive selection of specific sites. Substitution of positively selected residues in human PKR with residues found in related species altered sensitivity to PKR inhibitors from different poxviruses. Species-specific differences in sensitivity to poxviral pseudosubstrate inhibitors were identified between human and mouse PKR, and these differences were traced to positively selected residues near the eIF2α binding site. Our findings indicate how an antiviral protein evolved to evade viral inhibition while maintaining its primary function. Moreover, the identified species-specific differences in the susceptibility to viral inhibitors have important implications for studying human infections in nonhuman model systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Accelerated evolution of PKR.
Figure 2: Positively selected sites in the PKR kinase domain.
Figure 3: Altered sensitivity of PKR mutants to poxvirus proteins K3L and E3L.
Figure 4: Positively selected residues (PSRs) in PKR that alter sensitivity to poxvirus inhibitors.
Figure 5: Effects of PKR variants on sensitivity to pseudosubstrate inhibition in HeLa cells.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Pichlmair, A. & Reis e Sousa, C. Innate recognition of viruses. Immunity 27, 370–383 (2007).

    Article  CAS  Google Scholar 

  2. Ishii, K.J. & Akira, S. Innate immune recognition of nucleic acids: beyond toll-like receptors. Int. J. Cancer 117, 517–523 (2005).

    Article  CAS  Google Scholar 

  3. Kaufman, R.J. Double-stranded RNA-activated protein kinase PKR. in Translational Control of Gene Expression (eds. Sonenberg, N., Hershey, J.W.B. & Mathews, M.B.) 503–527 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2000).

    Google Scholar 

  4. Dey, M. et al. Mechanistic link between PKR dimerization, autophosphorylation, and eIF2α substrate recognition. Cell 122, 901–913 (2005).

    Article  CAS  Google Scholar 

  5. Barber, G.N. The dsRNA-dependent protein kinase, PKR and cell death. Cell Death Differ. 12, 563–570 (2005).

    Article  CAS  Google Scholar 

  6. Dever, T.E., Dar, A.C. & Sicheri, F. The eIF2α Kinases. in Translational Control in Biology and Medicine (eds. Mathews, M.B., Sonenberg, N. & Hershey, J.W.) 319–344 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2007).

    Google Scholar 

  7. Dever, T.E. Gene-specific regulation by general translation factors. Cell 108, 545–556 (2002).

    Article  CAS  Google Scholar 

  8. Toth, A.M., Zhang, P., Das, S., George, C.X. & Samuel, C.E. Interferon action and the double-stranded RNA-dependent enzymes ADAR1 adenosine deaminase and PKR protein kinase. Prog. Nucleic Acid Res. Mol. Biol. 81, 369–434 (2006).

    Article  CAS  Google Scholar 

  9. Langland, J.O., Cameron, J.M., Heck, M.C., Jancovich, J.K. & Jacobs, B.L. Inhibition of PKR by RNA and DNA viruses. Virus Res. 119, 100–110 (2006).

    Article  CAS  Google Scholar 

  10. Beattie, E., Tartaglia, J. & Paoletti, E. Vaccinia virus-encoded eIF-2α homolog abrogates the antiviral effect of interferon. Virology 183, 419–422 (1991).

    Article  CAS  Google Scholar 

  11. Davies, M.V., Elroy-Stein, O., Jagus, R., Moss, B. & Kaufman, R.J. The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA-activated protein kinase and phosphorylation of the α subunit of eukaryotic initiation factor 2. J. Virol. 66, 1943–1950 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Carroll, K., Elroy-Stein, O., Moss, B. & Jagus, R. Recombinant vaccinia virus K3L gene product prevents activation of double-stranded RNA-dependent, initiation factor 2α-specific protein kinase. J. Biol. Chem. 268, 12837–12842 (1993).

    CAS  PubMed  Google Scholar 

  13. Kawagishi-Kobayashi, M., Silverman, J.B., Ung, T.L. & Dever, T.E. Regulation of the protein kinase PKR by the vaccinia virus pseudosubstrate inhibitor K3L is dependent on residues conserved between the K3L protein and the PKR substrate eIF2α. Mol. Cell. Biol. 17, 4146–4158 (1997).

    Article  CAS  Google Scholar 

  14. Dar, A.C. & Sicheri, F. X-ray crystal structure and functional analysis of vaccinia virus K3L reveals molecular determinants for PKR subversion and substrate recognition. Mol. Cell 10, 295–305 (2002).

    Article  CAS  Google Scholar 

  15. Ramelot, T.A. et al. Myxoma virus immunomodulatory protein M156R is a structural mimic of eukaryotic translation initiation factor eIF2α. J. Mol. Biol. 322, 943–954 (2002).

    Article  CAS  Google Scholar 

  16. Dhaliwal, S. & Hoffman, D.W. The crystal structure of the N-terminal region of the α subunit of translation initiation factor 2 (eIF2α) from Saccharomyces cerevisiae provides a view of the loop containing serine 51, the target of the eIF2α-specific kinases. J. Mol. Biol. 334, 187–195 (2003).

    Article  CAS  Google Scholar 

  17. Nonato, M.C., Widom, J. & Clardy, J. Crystal structure of the N-terminal segment of human eukaryotic translation initiation factor 2α. J. Biol. Chem. 277, 17057–17061 (2002).

    Article  CAS  Google Scholar 

  18. Kawagishi-Kobayashi, M., Cao, C., Lu, J., Ozato, K. & Dever, T.E. Pseudosubstrate inhibition of protein kinase PKR by swine pox virus C8L gene product. Virology 276, 424–434 (2000).

    Article  CAS  Google Scholar 

  19. Chang, H.W., Watson, J.C. & Jacobs, B.L. The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc. Natl. Acad. Sci. USA 89, 4825–4829 (1992).

    Article  CAS  Google Scholar 

  20. Romano, P.R. et al. Inhibition of double-stranded RNA-dependent protein kinase PKR by vaccinia virus E3: role of complex formation and the E3 N-terminal domain. Mol. Cell. Biol. 18, 7304–7316 (1998).

    Article  CAS  Google Scholar 

  21. Sharp, T.V. et al. The vaccinia virus E3L gene product interacts with both the regulatory and the substrate binding regions of PKR: implications for PKR autoregulation. Virology 250, 302–315 (1998).

    Article  CAS  Google Scholar 

  22. Langland, J.O. & Jacobs, B.L. The role of the PKR-inhibitory genes, E3L and K3L, in determining vaccinia virus host range. Virology 299, 133–141 (2002).

    Article  CAS  Google Scholar 

  23. Dar, A.C., Dever, T.E. & Sicheri, F. Higher-order substrate recognition of eIF2α by the RNA-dependent protein kinase PKR. Cell 122, 887–900 (2005).

    Article  CAS  Google Scholar 

  24. Rothenburg, S. et al. A PKR-like eukaryotic initiation factor 2α kinase from zebrafish contains Z-DNA binding domains instead of dsRNA binding domains. Proc. Natl. Acad. Sci. USA 102, 1602–1607 (2005).

    Article  CAS  Google Scholar 

  25. Rothenburg, S., Deigendesch, N., Dey, M., Dever, T.E. & Tazi, L. Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: varying number of double-stranded RNA binding domains and lineage-specific duplications. BMC Biol. 6, 12 (2008).

    Article  Google Scholar 

  26. Chong, K.L. et al. Human p68 kinase exhibits growth suppression in yeast and homology to the translational regulator GCN2. EMBO J. 11, 1553–1562 (1992).

    Article  CAS  Google Scholar 

  27. Dever, T.E. et al. Mammalian eukaryotic initiation factor 2α kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast. Proc. Natl. Acad. Sci. USA 90, 4616–4620 (1993).

    Article  CAS  Google Scholar 

  28. Romano, P.R., Green, S.R., Barber, G.N., Mathews, M.B. & Hinnebusch, A.G. Structural requirements for double-stranded RNA binding, dimerization, and activation of the human eIF-2α kinase DAI in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 365–378 (1995).

    Article  CAS  Google Scholar 

  29. Zhang, P. & Samuel, C.E. Protein kinase PKR plays a stimulus- and virus-dependent role in apoptotic death and virus multiplication in human cells. J. Virol. 81, 8192–8200 (2007).

    Article  CAS  Google Scholar 

  30. Barber, G.N. et al. Translational regulation by the interferon-induced double-stranded-RNA-activated 68-kDa protein kinase. Proc. Natl. Acad. Sci. USA 90, 4621–4625 (1993).

    Article  CAS  Google Scholar 

  31. Seo, E.J. et al. Protein kinase PKR mutants resistant to the poxvirus pseudosubstrate K3L protein. Proc. Natl. Acad. Sci. USA 105, 16894–16899 (2008).

    Article  CAS  Google Scholar 

  32. McFadden, G. Poxvirus tropism. Nat. Rev. Microbiol. 3, 201–213 (2005).

    Article  CAS  Google Scholar 

  33. Werden, S.J., Rahman, M.M. & McFadden, G. Poxvirus host range genes. Adv. Virus Res. 71, 135–171 (2008).

    Article  CAS  Google Scholar 

  34. Lewis-Jones, S. Zoonotic poxvirus infections in humans. Curr. Opin. Infect. Dis. 17, 81–89 (2004).

    Article  Google Scholar 

  35. Essbauer, S., Bremont, M. & Ahne, W. Comparison of the eIF-2α homologous proteins of seven ranaviruses (Iridoviridae). Virus Genes 23, 347–359 (2001).

    Article  CAS  Google Scholar 

  36. Majji, S. et al. Rana catesbeiana virus Z (RCV-Z): a novel pathogenic ranavirus. Dis. Aquat. Organ. 73, 1–11 (2006).

    Article  CAS  Google Scholar 

  37. Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005).

    Article  CAS  Google Scholar 

  38. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    Article  CAS  Google Scholar 

  39. Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).

    Article  Google Scholar 

  40. Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997).

    CAS  PubMed  Google Scholar 

  41. Pond, S.L., Frost, S.D. & Muse, S.V. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005).

    Article  CAS  Google Scholar 

  42. Berglund, A.C., Wallner, B., Elofsson, A. & Liberles, D.A. Tertiary windowing to detect positive diversifying selection. J. Mol. Evol. 60, 499–504 (2005).

    Article  CAS  Google Scholar 

  43. Woolley, S., Johnson, J., Smith, M.J., Crandall, K.A. & McClellan, D.A. TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 19, 671–672 (2003).

    Article  CAS  Google Scholar 

  44. Yang, Z. Phylogenetic analysis using parsimony and likelihood methods. J. Mol. Evol. 42, 294–307 (1996).

    Article  CAS  Google Scholar 

  45. Cesareni, G. & Murray, J.A.H. Plasmid vectors carrying the replication origin of filamentous single-stranded phages. in Genetic Engineering: Principals and Methods, Vol. 9 (eds. Setlow, J.K. & Hollaender, A.) 135–154 (Plenum Press, New York, NY, 1987).

    Chapter  Google Scholar 

  46. Dever, T.E. et al. Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68, 585–596 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Hinnebusch, M. Yu and L. Tazi for helpful discussion and for careful reading of the manuscript; F. Sicheri, M. Dey, D. McClellan, A. Furano and C. Tellgren-Roth for helpful discussion; C. Samuel (University of California, Santa Barbara) for providing the PKR knockdown cells; and M. Kawagishi-Kobayashi and M. Dey (US National Institute of Child Health and Human Development (NICHD)) for yeast strains. This work was supported by funding from the Intramural Research Program of the US National Institutes of Health, NICHD, to T.E.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Rothenburg.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–6 (PDF 2105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothenburg, S., Seo, E., Gibbs, J. et al. Rapid evolution of protein kinase PKR alters sensitivity to viral inhibitors. Nat Struct Mol Biol 16, 63–70 (2009). https://doi.org/10.1038/nsmb.1529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing