Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility

Abstract

Expanded CGG repeats cause chromosomal fragility and hereditary neurological disorders in humans. Replication forks stall at CGG repeats in a length-dependent manner in primate cells and in yeast. Saccharomyces cerevisiae proteins Tof1 and Mrc1 facilitate replication fork progression through CGG repeats. Remarkably, the fork-stabilizing role of Mrc1 does not involve its checkpoint function. Thus, chromosomal fragility might occur when forks stalled at expanded CGG repeats escape the S-phase checkpoint.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Replication fork stalling at CGG repeats in mammalian cells.
Figure 2: Genetic control of replication fork pausing at CGG repeats.
Figure 3

Similar content being viewed by others

References

  1. Fu, Y.H. et al. Cell 67, 1047–1058 (1991).

    Article  CAS  Google Scholar 

  2. Mirkin, S.M. Nature 447, 932–940 (2007).

    Article  CAS  Google Scholar 

  3. Fry, M. & Loeb, L.A. Proc. Natl. Acad. Sci. USA 91, 4950–4954 (1994).

    Article  CAS  Google Scholar 

  4. Gacy, A.M., Goellner, G., Juranic, N., Macura, S. & McMurray, C.T. Cell 81, 533–540 (1995).

    Article  CAS  Google Scholar 

  5. Usdin, K. & Woodford, K.J. Nucleic Acids Res. 23, 4202–4229 (1995).

    Article  CAS  Google Scholar 

  6. Kang, S., Ohshima, K., Shimizu, M., Amirhaeri, S. & Wells, R.D. J. Biol. Chem. 270, 27014–27021 (1995).

    Article  CAS  Google Scholar 

  7. Samadashwily, G.M., Raca, G. & Mirkin, S.M. Nat. Genet. 17, 298–304 (1997).

    Article  CAS  Google Scholar 

  8. Pelletier, R., Krasilnikova, M.M., Samadashwily, G.M., Lahue, R.S. & Mirkin, S.M. Mol. Cell. Biol. 23, 1349–1357 (2003).

    Article  CAS  Google Scholar 

  9. Voineagu, I., Narayanan, V., Lobachev, K.S. & Mirkin, S.M. Proc. Natl. Acad. Sci. USA 105, 9936–9941 (2008).

    Article  CAS  Google Scholar 

  10. Nichol Edamura, K., Leonard, M.R. & Pearson, C.E. Am. J. Hum. Genet. 76, 302–311 (2005).

    Article  Google Scholar 

  11. Hodgson, B., Calzada, A. & Labib, K. Mol. Biol. Cell 18, 3894–3902 (2007).

    Article  CAS  Google Scholar 

  12. Katou, Y. et al. Nature 424, 1078–1083 (2003).

    Article  CAS  Google Scholar 

  13. Mohanty, B.K., Bairwa, N.K. & Bastia, D. Proc. Natl. Acad. Sci. USA 103, 897–902 (2006).

    Article  CAS  Google Scholar 

  14. Calzada, A., Hodgson, B., Kanemaki, M., Bueno, A. & Labib, K. Genes Dev. 19, 1905–1919 (2005).

    Article  CAS  Google Scholar 

  15. Osborn, A.J. & Elledge, S.J. Genes Dev. 17, 1755–1767 (2003).

    Article  CAS  Google Scholar 

  16. Torres-Rosell, J. et al. Science 315, 1411–1415 (2007).

    Article  CAS  Google Scholar 

  17. Hansen, R.S., Canfield, T.K., Lamb, M.M., Gartler, S.M. & Laird, C.D. Cell 73, 1403–1409 (1993).

    Article  CAS  Google Scholar 

  18. Freudenreich, C.H. & Lahiri, M. Cell Cycle 3, 1370–1374 (2004).

    Article  CAS  Google Scholar 

  19. Razidlo, D.F. & Lahue, R.S. DNA Repair (Amst.) 7, 633–640 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Mirkin for her help with plasmid construction, C. Freudenreich for many useful suggestions, S. Elledge (Harvard Medical School) for the plasmid with the mrc1AQ allele and J. and P. White for their generosity. Supported by the US National Institutes of Health grant GM60987 to S.M.M.

Author information

Authors and Affiliations

Authors

Contributions

I.V. designed and performed experiments in yeast and mammalian cells, and wrote the paper; C.F.S. performed replication studies in mammalian cells; A.A.S. performed cassettes for yeast knockouts; M.M.K. contributed to plasmid construction; S.M.M. designed experiments, supervised the whole project and wrote the paper.

Corresponding author

Correspondence to Sergei M Mirkin.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Methods (PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voineagu, I., Surka, C., Shishkin, A. et al. Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility. Nat Struct Mol Biol 16, 226–228 (2009). https://doi.org/10.1038/nsmb.1527

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1527

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing