Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insights into RNA recognition by the alternative-splicing regulator muscleblind-like MBNL1

Abstract

Muscleblind-like (MBNL) proteins, regulators of developmentally programmed alternative splicing, harbor tandem CCCH zinc-finger (ZnF) domains that target pre-mRNAs containing YGCU(U/G)Y sequence elements (where Y is a pyrimidine). In myotonic dystrophy, reduced levels of MBNL proteins lead to aberrant alternative splicing of a subset of pre-mRNAs. The crystal structure of MBNL1 ZnF3/4 bound to r(CGCUGU) establishes that both ZnF3 and ZnF4 target GC steps, with site-specific recognition mediated by a network of hydrogen bonds formed primarily with main chain groups of the protein. The relative alignment of ZnF3 and ZnF4 domains is dictated by the topology of the interdomain linker, with a resulting antiparallel orientation of bound GC elements, supportive of a chain-reversal loop trajectory for MBNL1-bound pre-mRNA targets. We anticipate that MBNL1-mediated targeting of looped RNA segments proximal to splice-site junctions could contribute to pre-mRNA alternative-splicing regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain architecture, sequence alignment and structure of the tandem ZnF domains of human MBNL1.
Figure 2: Crystal packing interactions of the MBNL1 ZnF3/4 in the free state and bound to the r(C1-G2-C3-U4-G5-U6) sequence.
Figure 3: Protein-RNA interactions in the molecule A complex.
Figure 4: Details of intermolecular protein-RNA recognition contacts in the complex.
Figure 5: Binding of GCU-containing RNAs to MBNL1 ZnF3/4.
Figure 6: Comparison of MBNL1 ZnF3/4 and TIS11d19 ZnF1/2 complexes with their respective RNA targets.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

GenBank/EMBL/DDBJ

References

  1. Black, D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Pascual, M., Vicente, M., Monferrer, L. & Artero, R. The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation 74, 65–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Ho, T.H. et al. Muscleblind proteins regulate alternative splicing. EMBO J. 23, 3103–3112 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lin, X. et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum. Mol. Genet. 15, 2087–2097 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Osborne, R.J. & Thornton, C.A. RNA-dominant diseases. Hum. Mol. Genet. 15, R162–R169 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Ranum, L.P. & Cooper, T.A. RNA-mediated neuromuscular disorders. Annu. Rev. Neurosci. 29, 259–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Liquori, C.L. et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293, 864–867 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Fardaei, M. et al. Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum. Mol. Genet. 11, 805–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Kino, Y. et al. Muscleblind protein, MBNL1/EXP, binds specifically to CHHG repeats. Hum. Mol. Genet. 13, 495–507 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Miller, J.W. et al. Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy. EMBO J. 19, 4439–4448 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kanadia, R.N. et al. A muscleblind knockout model for myotonic dystrophy. Science 302, 1978–1980 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Kanadia, R.N. et al. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc. Natl. Acad. Sci. USA 103, 11748–11753 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paul, S. et al. Interaction of muscleblind, CUG-BP1 and hnRNP H proteins in DM1-associated aberrant IR splicing. EMBO J. 25, 4271–4283 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Philips, A.V., Timchenko, L.T. & Cooper, T.A. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280, 737–741 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Savkur, R.S., Philips, A.V. & Cooper, T.A. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat. Genet. 29, 40–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Squillace, R.M., Chenault, D.M. & Wang, E.H. Inhibition of muscle differentiation by the novel muscleblind-related protein CHCR. Dev. Biol. 250, 218–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Adereth, Y., Dammai, V., Kose, N., Li, R. & Hsu, T. RNA-dependent integrin α3 protein localization regulated by the Muscleblind-like protein MLP1. Nat. Cell Biol. 7, 1240–1247 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hudson, B.P., Martinez-Yamout, M.A., Dyson, H.J. & Wright, P.E. Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat. Struct. Mol. Biol. 11, 257–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Varani, L. et al. The NMR structure of the 38 kDa U1A protein – PIE RNA complex reveals the basis of cooperativity in regulation of polyadenylation by human U1A protein. Nat. Struct. Biol. 7, 329–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Kielkopf, C.L., Rodionova, N.A., Green, M.R. & Burley, S.K. A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer. Cell 106, 595–605 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Selenko, P. et al. Structural basis for the molecular recognition between human splicing factors U2AF65 and SF1/mBBP. Mol. Cell 11, 965–976 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. D'Souza, V. & Summers, M.F. Structural basis for packaging the dimeric genome of Moloney murine leukaemia virus. Nature 431, 586–590 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. De Guzman, R.N. et al. Structure of the HIV-1 nucleocapsid protein bound to the SL3 Ψ-RNA recognition element. Science 279, 384–388 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, B.M. et al. Induced fit and “lock and key” recognition of 5S RNA by zinc fingers of transcription factor IIIA. J. Mol. Biol. 357, 275–291 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Lu, D., Searles, M.A. & Klug, A. Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature 426, 96–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Warf, M.B. & Berglund, J.A. MBNL binds similar RNA structures in the CUG repeats of myotonic dystrophy and its pre-mRNA substrate cardiac troponin T. RNA 13, 2238–2251 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oberstrass, F.C. et al. Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309, 2054–2057 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Martinez-Contreras, R. et al. Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol. 4, e21 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Marley, J., Lu, M. & Bracken, C. A method for efficient isotopic labeling of recombinant proteins. J. Biomol. NMR 20, 71–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  PubMed  Google Scholar 

  34. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Abrahams, J.P. & Leslie, A.G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D Biol. Crystallogr. 52, 30–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Collaborative Computational Project, Number 4. Collaborative computational project number 4. The CCP4 suite: programmes for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  37. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Cambillau, C. & Roussel, A. Turbo Frodo, Version OpenGL.1http://www.afmb.univ-mrs.fr/-TURBO-〉(1997).

  39. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Poveda, J.A., Prieto, M., Encinar, J.A., Gonzalez-Ros, J.M. & Mateo, C.R. Intrinsic tyrosine fluorescence as a tool to study the interaction of the shaker B “ball” peptide with anionic membranes. Biochemistry 42, 7124–7132 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Kurganov, B.I., Sugrobova, N.P. & Yakovlev, V.A. Estimation of dissociation constant of enzyme-ligand complex from fluorometric data by “difference” method. FEBS Lett. 19, 308–310 (1972).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the US National Institutes of Health grant CA049982 to D.J.P. We thank S. Ilin for help with NMR data collection and O. Rechkoblit for help with X-ray synchrotron data collection of one of the data sets. We would like to thank the staff of NE-CAT beam line at the Advanced Photon Source, Argonne National Laboratory, supported by the US Department of Energy, for assistance with data collection.

Author information

Authors and Affiliations

Authors

Contributions

The biochemical and structural research was undertaken by M.T. under the supervision of D.J.P. Both M.T. and D.J.P. contributed to the writing of the paper.

Corresponding author

Correspondence to Dinshaw J Patel.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 3128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teplova, M., Patel, D. Structural insights into RNA recognition by the alternative-splicing regulator muscleblind-like MBNL1. Nat Struct Mol Biol 15, 1343–1351 (2008). https://doi.org/10.1038/nsmb.1519

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1519

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing