Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B

Abstract

The endosomal sorting complex required for transport (ESCRT) machinery, including ESCRT-III, localizes to the midbody and participates in the membrane-abscission step of cytokinesis. The ESCRT-III protein charged multivesicular body protein 1B (CHMP1B) is required for recruitment of the MIT domain–containing protein spastin, a microtubule-severing enzyme, to the midbody. The 2.5-Å structure of the C-terminal tail of CHMP1B with the MIT domain of spastin reveals a specific, high-affinity complex involving a noncanonical binding site between the first and third helices of the MIT domain. The structural interface is twice as large as that of the MIT domain of the VPS4–CHMP complex, consistent with the high affinity of the interaction. A series of unique hydrogen-bonding interactions and close packing of small side chains discriminate against the other ten human ESCRT-III subunits. Point mutants in the CHMP1B binding site of spastin block recruitment of spastin to the midbody and impair cytokinesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CHMP1B is present at midbodies and colocalizes with and recruits spastin.
Figure 2: Spastin–CHMP1B interactions.
Figure 3: Structure of the spastin MIT domain–CHMP1B complex.
Figure 4: Overlapping specificity determinants in MIT domain recognition.
Figure 5: The Spastin MIT domain mutant protein shows decreased enrichment at midbodies and alters cytokinesis.
Figure 6: Speculative model for the role of the spastin–ESCRT-III interaction in cytokinesis.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Saksena, S., Sun, J., Chu, T. & Emr, S.D. ESCRTing proteins in the endocytic pathway. Trends Biochem. Sci. 32, 561–573 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Hurley, J.H. ESCRT complexes and the biogenesis of multivesicular bodies. Curr. Opin. Cell Biol. 20, 4–11 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morita, E. & Sundquist, W.I. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20, 395–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Carlton, J.G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Glotzer, M. The molecular requirements for cytokinesis. Science 307, 1735–1739 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Skop, A.R., Liu, H.B., Yates, J., Meyer, B.J. & Heald, R. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305, 61–66 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gromley, A. et al. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123, 75–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Pohl, C. & Jentsch, S. Final stages of cytokinesis and midbody ring formation are controlled by BRUCE. Cell 132, 832–845 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Hanson, P.I., Roth, R., Lin, Y. & Heuser, J.E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389–402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lata, S. et al. Helical structures of ESCRT-III are disassembled by VPS4. Science 321, 1354–1357 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dukes, J.D., Richardson, J.D., Simmons, R. & Whitley, P. A dominant-negative ESCRT-III protein perturbs cytokinesis and trafficking to lysosomes. Biochem. J. 411, 233–239 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Hurley, J.H. & Yang, D. MIT domainia. Dev. Cell 14, 6–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Stuchell-Brereton, M.D. et al. ESCRT-III recognition by VPS4 ATPases. Nature 449, 740–744 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Obita, T. et al. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735–739 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Reid, E. et al. The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum. Mol. Genet. 14, 19–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Soderblom, C. & Blackstone, C. Traffic accidents: molecular genetic insights into the pathogenesis of the hereditary spastic paraplegias. Pharmacol. Ther. 109, 42–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Roll-Mecak, A. & Vale, R.D. Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 451, 363–367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Errico, A., Claudiani, P., D'Addio, M. & Rugarli, E.I. Spastin interacts with the centrosomal protein NA14, and is enriched in the spindle pole, the midbody and the distal axon. Hum. Mol. Genet. 13, 2121–2132 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Carlton, J.G., Agromayor, M. & Martin-Serrano, J. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc. Natl. Acad. Sci. USA 105, 10541–10546 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zamborlini, A. et al. Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc. Natl. Acad. Sci. USA 103, 19140–19145 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shim, S., Kimpler, L.A. & Hanson, P.I. Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain. Traffic 8, 1068–1079 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Lata, S. et al. Structural basis for autoinhibition of ESCRT-III CHMP3. J. Mol. Biol. 378, 818–825 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xiao, J. et al. Structural basis of Vta1 function in the multi-vesicular body sorting pathway. Dev. Cell 14, 37–49 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Azmi, I.F. et al. ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1. Dev. Cell 14, 50–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Shim, S., Merrill, S.A. & Hanson, P.I. Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly. Mol. Biol. Cell 19, 2661–2672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsang, H.T.H. et al. A systematic analysis of human CHMP protein interactions: additional MIT domain-containing proteins bind to multiple components of the human ESCRT III complex. Genomics 88, 333–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Agromayor, M. & Martin-Serrano, J. Interaction of AMSH with ESCRT-III and deubiquitination of endosomal cargo. J. Biol. Chem. 281, 23083–23091 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Ma, Y.M. et al. Targeting of AMSH to endosomes is required for epidermal growth factor degradation. J. Biol. Chem. 282, 9805–9812 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Row, P.E. et al. The MIT domain of UBPY constitutes a CHMP binding and endosomal localization signal required for efficient EGF receptor degradation. J. Biol. Chem. 282, 30929–30937 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Kieffer, C. et al. Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding. Dev. Cell 15, 62–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blackstone, C., Roberts, R.G., Seeburg, D.P. & Sheng, M. Interaction of the deafness-dystonia protein DDP/TIMM8a with the signal transduction adaptor molecule STAM1. Biochem. Biophys. Res. Commun. 305, 345–352 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Yu, W. et al. The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches. Mol. Biol. Cell 19, 1485–1498 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  38. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum- likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Elia for discussions, the staff of SER-CAT for user support at the Advance Photon Source (APS), C.-R. Chang for technical assistance, E. Tyler for generating Figure 6 and D. Davies for comments on the manuscript. Use of the APS was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under Contract No.W-31-109-Eng-38. This project was funded by the Intramural Research Programs of US National Institute of Diabetes and Digestive and Kidney Diseases, US National Institute of Neurological Disorders and Stroke and the US National Institute of Child Health and Human Development, and the Bench-to-Bedside program of the US National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Contributions

D.Y. carried out binding experiments, crystallization and structure determination; N.R. and B.R. carried out knockdown and cell-imaging experiments; J.L.-S. interpreted data; C.B. carried out yeast two-hybrid experiments; C.B. and J.H.H. designed research, interpreted data and wrote the paper.

Corresponding authors

Correspondence to Craig Blackstone or James H Hurley.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Discussion. (PDF 12460 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, D., Rismanchi, N., Renvoisé, B. et al. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nat Struct Mol Biol 15, 1278–1286 (2008). https://doi.org/10.1038/nsmb.1512

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1512

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing