Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases

Abstract

IpaH proteins are E3 ubiquitin ligases delivered by the type III secretion apparatus into host cells upon infection of humans by the Gram-negative pathogen Shigella flexneri. These proteins comprise a variable leucine-rich repeat–containing N-terminal domain and a conserved C-terminal domain harboring an invariant cysteine residue that is crucial for activity. IpaH homologs are encoded by diverse animal and plant pathogens. Here we demonstrate that the IpaH C-terminal domain carries the catalytic activity for ubiquitin transfer and that the N-terminal domain carries the substrate specificity. The structure of the IpaH C-terminal domain, determined to 2.65-Å resolution, represents an all-helical fold bearing no resemblance to previously defined E3 ubiquitin ligases. The conserved and essential cysteine residue lies on a flexible, surface-exposed loop surrounded by conserved acidic residues, two of which are crucial for IpaH activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The C-terminal domain of IpaH proteins shows E3 ubiquitin-ligase activity.
Figure 2: E3 ubiquitin ligase activity of full-length IpaH proteins.
Figure 3: Overall structure of the IpaH1.4 C-terminal domain.
Figure 4: Multiple sequence alignment of IpaH homologs.
Figure 5: Environment of the conserved cysteine residue.
Figure 6: Functional analysis of conserved residues.
Figure 7: IpaH interactions with E2 conjugating enzymes.
Figure 8: Structures of different classes of E3 ligases in which a cysteine residue is essential for activity.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Bhavsar, A.P., Guttman, J.A. & Finlay, B.B. Manipulation of host-cell pathways by bacterial pathogens. Nature 449, 827–834 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Galán, J.E. & Cossart, P. Host-pathogen interactions: a diversity of themes, a variety of molecular machines. Curr. Opin. Microbiol. 8, 1–3 (2005).

    Article  PubMed  Google Scholar 

  3. Ardley, H.C. & Robinson, P.A. E3 ubiquitin ligases. Essays Biochem. 41, 15–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Mattoo, S., Lee, Y.M. & Dixon, J.E. Interactions of bacterial effector proteins with host proteins. Curr. Opin. Immunol. 19, 392–401 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Abramovitch, R.B., Janjusevic, R., Stebbins, C.E. & Martin, G.B. Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proc. Natl. Acad. Sci. USA 103, 2851–2856 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosebrock, T.R. et al. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448, 370–374 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Angot, A. et al. Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. Proc. Natl. Acad. Sci. USA 103, 14620–14625 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, Y., Higashide, W.M., McCormick, B.A., Chen, J. & Zhou, D. The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol. Microbiol. 62, 786–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Diao, J., Zhang, Y., Huibregtse, J.M., Zhou, D. & Chen, J. Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nat. Struct. Mol. Biol. 15, 65–70 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Kubori, T., Hyakutake, A. & Nagai, H. Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol. Microbiol. 67, 1307–1319 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Buchrieser, C. et al. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol. Microbiol. 38, 760–771 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Ashida, H., Toyotome, T., Nagai, T. & Sasakawa, C. Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors. Mol. Microbiol. 63, 680–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Rohde, J.R., Breitkreutz, A., Chenal, A., Sansonetti, P.J. & Parsot, C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1, 77–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Dohlman, H.G., Song, J., Ma, D., Courchesne, W.E. & Thorner, J. Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa1 (the G-protein alpha subunit). Mol. Cell. Biol. 16, 5194–5209 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Houben, K. et al. Solution structure of the ubiquitin-conjugating enzyme UbcH5B. J. Mol. Biol. 344, 513–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Dominguez, C. et al. Structural model of the UbcH5B/CNOT4 complex revealed by combining NMR, mutagenesis, and docking approaches. Structure 12, 633–644 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Winkler, G.S. et al. An altered-specificity ubiquitin-conjugating enzyme/ubiquitin-protein ligase pair. J. Mol. Biol. 337, 157–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Eletr, Z.M. & Kuhlman, B. Sequence determinants of E2–E6AP binding affinity and specificity. J. Mol. Biol. 369, 419–428 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beaudenon, S., Dastur, A. & Huibregtse, J.M. Expression and assay of HECT domain ligases. Methods Enzymol. 398, 112–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Sun, S.C. Deubiquitylation and regulation of the immune response. Nat. Rev. Immunol. 8, 501–511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, M. & Pickart, C.M. Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. EMBO J. 24, 4324–4333 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, P.Y. et al. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 22, 5241–5250 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tolbert, B.S. et al. The active site cysteine of ubiquitin-conjugating enzymes has a significantly elevated pKa: functional implications. Biochemistry 44, 16385–16391 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Verdecia, M.A. et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol. Cell 11, 249–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Mavris, M. et al. Regulation of transcription by the activity of the Shigella flexneri type III secretion apparatus. Mol. Microbiol. 43, 1543–1553 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, D.W. et al. The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc. Natl. Acad. Sci. USA 102, 14046–14051 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Breitkreutz, A., Boucher, L. & Tyers, M. MAPK specificity in the yeast pheromone response independent of transcriptional activation. Curr. Biol. 11, 1266–1271 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, R.G. et al. Structure of Thermotoga maritima stationary phase survival protein SurE: a novel acid phosphatase. Structure 9, 1095–1106 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kimber, M.S. et al. Data mining crystallization databases: knowledge-based approaches to optimize protein crystal screens. Proteins 51, 562–568 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859–866 (2006).

    Article  PubMed  Google Scholar 

  32. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  PubMed  Google Scholar 

  33. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr. 59, 2023–2030 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. de la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  37. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  39. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr. 57, 122–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Winn, M.D., Murshudov, G.N. & Papiz, M.Z. Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol. 374, 300–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the staff at the Argonne National Laboratory beam line 19-ID for assistance with data collection and A. Edwards for critical reading of the manuscript. We also wish to thank S. Dhe-Paganon and G. Avvakumov at the Structural Genomics Consortium, Toronto, for providing the collection of expression constructs for human E2-conjugating enzymes. We thank D. Briant for insight to E3 ubiquitination assays. This work was supported by US National Institutes of Health Grants GM62414-01, by the Ontario Research and Development Challenge Fund and by a grant from the Canadian Institutes of Health Research Grant. M.T. is supported by grants from the Canadian Institutes of Health Research (MT012466 and MOP-57795), the National Cancer Institute of Canada, the Royal Society and the Scottish Universities Life Sciences Alliance.

Author information

Authors and Affiliations

Authors

Contributions

A.U.S. and R.L. determined the structure of the IpaH-CTD and contributed the data for Figures 2, 4 and 6 and Supplementary Figure 1. J.R.R. contributed the data for Figures 1, 2 and 6. T.S. and O.K. purified and crystallized IpaH-CTD. T.S. also contributed the data for Figures 1, 2, 6 and 7. R.D. subcloned most of the constructs. M.E.C. helped with diffraction data collection. A.U.S., J.R.R., N.Y.C., A.J., R.L., M.T., P.J.S., C.P. and A.S. designed experiments, analyzed data and prepared the manuscript.

Corresponding author

Correspondence to Alexei Savchenko.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 1639 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, A., Rohde, J., Lam, R. et al. Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat Struct Mol Biol 15, 1293–1301 (2008). https://doi.org/10.1038/nsmb.1511

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1511

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing