Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Primary microRNA transcripts are processed co-transcriptionally

Abstract

microRNAs (miRNAs) are generated from long primary (pri-) RNA polymerase II (Pol II)–derived transcripts by two RNase III processing reactions: Drosha cleavage of nuclear pri-miRNAs and Dicer cleavage of cytoplasmic pre-miRNAs. Here we show that Drosha cleavage occurs during transcription acting on both independently transcribed and intron-encoded miRNAs. We also show that both 5′-3′ and 3′-5′ exonucleases associate with the sites where co-transcriptional Drosha cleavage occurs, promoting intron degradation before splicing. We finally demonstrate that miRNAs can also derive from 3` flanking transcripts of Pol II genes. Our results demonstrate that multiple miRNA-containing transcripts are co-transcriptionally cleaved during their synthesis and suggest that exonucleolytic degradation from Drosha cleavage sites in pre-mRNAs may influence the splicing and maturation of numerous mRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromatin association of the Microprocessor complex.
Figure 2: Specificity of the Drosha–miRNA chromatin interaction.
Figure 3: miRNA maturation from the second intron and 3′ flanking region of the β-globin gene in HeLa cells.
Figure 4: Co-transcriptional processing of pre-miRNAs from the β-globin gene intron 2.
Figure 5: Exonuclease activities are associated with chromatin of intronic pre-miRNAs.

Similar content being viewed by others

References

  1. Kim, V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Basyuk, E., Suavet, F., Doglio, A., Bordonné, R. & Bertrand, E. Human let-7 stem-loop precursors harbour features of RNase III cleavage products. Nucleic Acids Res. 31, 6593–6597 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Denli, A.M., Tops, B.B.J., Plasterk, R.H.A., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the microprocessor complex. Nature 432, 231–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Gregory, R.I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887–901 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lund, E., Güttinger, S., Calado, A., Dahlberg, J.E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Valencia-Sanchez, M.A., Liu, J., Hannon, G.J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, Y., Jeon, K., Lee, J.T., Kim, S. & Kim, V.N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Saini, H.K., Griffiths-Jones, S. & Enright, A.J. Genomic analysis of human microRNA transcripts. Proc. Natl. Acad. Sci. USA 104, 17719–17724 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A. & Tuschl, T. New microRNAs from mouse and human. RNA 9, 175–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Rodriguez, A., Griffiths-Jones, S., Ashurst, J.L. & Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Kim, Y.K. & Kim, V.N. Processing of intronic microRNAs. EMBO J. 26, 775–783 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Baskerville, S. & Bartel, D.P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241–247 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Smalheiser, N.R. EST analyses predict the existence of a population of chimeric microRNA precursor-mRNA transcripts expressed in normal human and mouse tissues. Genome Biol. 4, 403 (2003).

    Article  PubMed  Google Scholar 

  17. Qu, L.H. et al. U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA. Nucleic Acids Res. 23, 2669–2676 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. de Turris, V. et al. TOP promoter elements control the relative ratio of intron-encoded snoRNA versus spliced mRNA biosynthesis. J. Mol. Biol. 344, 383–394 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Hirose, T., Shu, M.D. & Steitz, J.A. Splicing-dependent and -independent modes of assembly for intron-encoded box C/D snoRNPs in mammalian cells. Mol. Cell 12, 113–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Richard, P., Kiss, A.M., Darzacq, X. & Kiss, T. Cotranscriptional recognition of human intronic box H/ACA snoRNAs occurs in a splicing-independent manner. Mol. Cell. Biol. 26, 2540–2549 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, P.K. et al. Cotranscriptional recruitment of the pseudouridylsynthetase Cbf5p and of the RNA binding protein Naf1p during H/ACA snoRNP assembly. Mol. Cell. Biol. 25, 3295–3304 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Fazi, F. et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis. Cell 123, 819–831 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Glover-Cutter, K., Kim, S., Espinosa, J. & Bentley, D.L. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat. Struct. Mol. Biol. 15, 71–78 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Yeom, K.H., Lee, Y., Han, J., Suh, M.R. & Kim, V.N. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res. 34, 4622–4629 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Dye, M.J., Gromak, N. & Proudfoot, N.J. Exon tethering in transcription by RNA polymerase II. Mol. Cell 21, 849–859 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Gromak, N., Talotti, G., Proudfoot, N.J. & Pagani, F. Modulating alternative splicing by cotranscriptional cleavage of nascent intronic RNA. RNA 14, 359–366 (2007).

    Article  PubMed  Google Scholar 

  29. Kluiver, J. et al. Regulation of pri-microRNA BI transcription and processing in Burkitt lynphoma. Oncogene 26, 3769–3776 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Thomson, J.M. et al. Extensive post-transcriptional regulation of microRNA and its implication for cancer. Genes Dev. 20, 2202–2207 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. West, S., Gromak, N. & Proudfoot, N.J. Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522–525 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. West, S., Proudfoot, N.J. & Dye, M. Molecular dissection of mammalian RNA polymerase II transcriptional termination. Mol. Cell 29, 600–610 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. West, S., Gromak, N., Norbury, C.J. & Proudfoot, N.J. Adenylation and exosome-mediated degradation of cotranscriptionally cleaved pre-messenger RNA in human cells. Mol. Cell 21, 437–443 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Wuarin, J. & Schibler, U. Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol. Cell. Biol. 14, 7219–7225 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Zhou, H. & Lin, K. Excess of microRNAs in large and very 5′ biased introns. Biochem. Biophys. Res. Commun. 368, 709–715 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Kampa, D. et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res. 14, 331–342 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Clark, T.A. et al. Discovery of tissue-specific exons using comprehensive human exon microarrays. Genome Biol. 8, R64 (2007).

    Article  PubMed  Google Scholar 

  38. Proudfoot, N.J., Furger, A. & Dye, M.J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Ryman, K., Fong, N., Bratt, E., Bentley, D.L. & Ohman, M. The C-terminal domain of RNA Pol II helps ensure that editing precedes splicing of the GluR-B transcript. RNA 13, 1071–1078 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, M. et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517–522 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Gromak, N., West, S. & Proudfoot, N.J. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol. Cell. Biol. 26, 3986–3996 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Dye, M.J., Gromak, N., Haussecker, D., West, S. & Proudfoot, N.J. Turnover and function of noncoding RNA polymerase II transcripts. Cold Spring Harb. Symp. Quant. Biol. 71, 275–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Danin-Kreiselman, M., Lee, C.Y. & Chanfreau, G. RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns. Mol. Cell 11, 1279–1289 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Kiss, T. SnoRNP biogenesis meets Pre-mRNA splicing. Mol. Cell 23, 775–776 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Shiohama, A., Sasaki, T., Noda, S., Minoshima, S. & Shimizu, N. Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins. Exp. Cell Res. 313, 4196–4207 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Guil, S. & Cáceres, J.F. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat. Struct. Mol. Biol. 14, 591–596 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Wagner, E.J. & Garcia-Blanco, M.A. RNAi-mediated PTB depletion leads to enhanced exon definition. Mol. Cell 10, 943–949 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Forsberg, E.C. et al. Developmentally dynamic histone acetylation pattern of a tissue-specific chromatin domain. Proc. Natl. Acad. Sci. USA 97, 14494–14499 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Ballarino, M., Morlando, M., Pagano, F., Fatica, A. & Bozzoni, I. The cotranscriptional assembly of snoRNPs controls the biosynthesis of H/ACA snoRNAs in Saccharomyces cerevisiae. Mol. Cell. Biol. 25, 5396–5403 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Haussecker, D. & Proudfoot, N. J. Dicer-dependent turnover of intergenic transcripts from the human β-globin gene cluster. Mol. Cell. Biol. 25, 9724–9733 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Dye, M.J. & Proudfoot, N.J. Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II. Mol. Cell 3, 371–378 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Griffiths-Jones, S. The microRNA Registry. Nucleic Acids Res. 32, D109–D111 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Kent, W.J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Megraw, M., Sethupathy, P., Corda, B. & Hatzigeorgiou, A.G. miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res. 35, D149–D155 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Dye, M.J. & Proudfoot, N.J. Multiple transcript cleavage precedes polymerase release in termination by RNA polymerase II. Cell 105, 669–681 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Pawlicki, J.M. & Steitz, J.A. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J. Cell Biol. 182, 61–76 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Cacchiarelli for the bioinformatics analysis and to M. Dye and S. West for helpful advice and discussion and for sharing unpublished data. M.M. was supported by an EMBO Long term fellowship. This work was partly supported by the 6th Framework Programme of the European Commission, SIROCCO and RIGHT Integrated Projects (LSHG-CT-2006-037900 and LSHB-CT-2004 005276) and Centro di Eccellenza BEMM to I.B. and by the ESF project “NuRNASu” to I.B. and N.J.P. The Proudfoot laboratory is supported by a Wellcome Trust Programme Grant.

Author information

Authors and Affiliations

Authors

Contributions

M.M. performed the experimental work except that M.B. carried out experiments on intergenic miRNA host genes together with F.P., and N.G. carried out experiments on exonuclease involvement. M.M., I.B., N.G. and N.J.P. wrote the paper. All authors read and agree with the paper's contents.

Note: Supplementary information is available on the Nature Structural & Molecular Biology website.

Corresponding author

Correspondence to Nick J Proudfoot.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, and Supplementary Table 1 (PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morlando, M., Ballarino, M., Gromak, N. et al. Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 15, 902–909 (2008). https://doi.org/10.1038/nsmb.1475

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1475

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing