Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of CCT–Hsc70NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin

Abstract

Chaperones, a group of proteins that assist the folding of other proteins, seem to work in a coordinated manner. Two major chaperone families are heat-shock protein families Hsp60 and Hsp70. Here we show for the first time the formation of a stable complex between chaperonin-containing TCP-1 (CCT) and Hsc70, two eukaryotic representatives of these chaperone families. This interaction takes place between the apical domain of the CCTβ subunit and the nucleotide binding domain of Hsc70, and may serve to deliver the unfolded substrate from Hsc70 to the substrate binding region of CCT. We also show that a similar interaction does not occur between their prokaryotic counterparts GroEL and DnaK, suggesting that in eukarya the two types of chaperones have evolved to a concerted action that makes the folding task more efficient.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding of Hsc70 to CCT.
Figure 2: The specificity of the CCT–Hsc70 interaction.
Figure 3: The three-dimensional structure of the CCT–Hsc70NBD complex.
Figure 4: The specific interaction between Hsc70 and CCT.
Figure 5: The specific interaction between Hsc70 and CCT.
Figure 6: A possible mechanism of substrate release by Hsc70 into the CCT cavity.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Mogk, A., Bukau, B. & Deuerling, E. Cellular functions of cytosolic E. coli chaperones. in Molecular Chaperones in the Cell. (ed. Lund, P.) 1–34 (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  2. Martín-Benito, J. et al. Divergent substrate-binding mechanisms reveal an evolutionary specialization of eukaryotic prefoldin compared to its archaeal counterpart. Structure 15, 101–110 (2007).

    Article  PubMed  Google Scholar 

  3. Bukau, B. & Horwich, A.L. The hsp70, hsp60 chaperone machines. Cell 92, 351–366 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Braig, K. et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371, 578–586 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Valpuesta, J.M., Carrascosa, J.L. & Willison, K.R. Structure and function of the cytosolic chaperonin CCT. in Protein Folding Handbook (eds. Buchner, J. & Kiefhaber, T.) 725–755 (Wiley-VCH, Weinheim, 2005).

    Chapter  Google Scholar 

  6. Craig, E.A. & Huang, P. Cellular functions of Hsp70 chaperones. in Protein Folding Handbook (eds. Buchner, J. & Kiefhaber, T.) 490–515 (Wiley-VCH, Weinheim, 2005).

    Chapter  Google Scholar 

  7. Langer, T. et al. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356, 683–689 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Lewis, V.A., Hynes, G.M., Zheng, D., Saibil, H. & Willison, K. T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature 358, 249–252 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F.U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111–117 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Hynes, G., Sutton, C.W. & Willison, K.R. Peptide mass fingerprinting of chaperonin-containing TCP-1 (CCT) and copurifying proteins. FASEB J. 10, 137–147 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Melville, M.W., McClellan, A.J., Meyer, A.S., Darveau, A. & Frydman, J. The Hsp70 and TriC/CCT chaperone systems cooperate in vivo to assemble the Von Hippel-Lindau tumor suppressor complex. Mol. Cell. Biol. 23, 3141–3151 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Behrends, C. et al. Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol. Cell 23, 887–897 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Tam, S., Geller, R., Spiess, C. & Frydman, J. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat. Cell Biol. 8, 1155–1162 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kitamura, A. et al. Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat. Cell Biol. 8, 1163–1170 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Chou, C.C. et al. Crystal structure of the C-terminal 10-kDa subdomain of Hsc70. J. Biol. Chem. 278, 30311–30316 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, J., Prasad, K., Lafer, E.M. & Sousa, R.M. Structural basis of interdomain communication in the Hsc70 chaperone. Mol. Cell 20, 513–524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liou, A.K.F. & Willison, K.R. Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of micro-complexes. EMBO J. 16, 4311–4316 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rivenzon-Segal, D., Wolf, S.G., Shimon, L., Willison, K.R. & Horovitz, A. Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis. Nat. Struct. Mol. Biol. 12, 233–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Llorca, O. et al. Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Nature 402, 693–696 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Llorca, O. et al. Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations. EMBO J. 19, 5971–5979 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martín-Benito, J. et al. Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J. 21, 6377–6386 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martín-Benito, J. et al. Structure of the complex between the cytosolic chaperonin CCT and phosducin-like protein. Proc. Natl. Acad. Sci. USA 101, 17410–17415 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hynes, G., Sutton, C.W. & Willison, K.R. Peptide mass fingerprinting of chaperonin-containing TCP-1 (CCT) and copurifying proteins. FASEB J. 10, 137–147 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Scheres, S.H.W. et al. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4, 27–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, Q. & Hendrickson, W.A. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131, 106–120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dragovic, Z., Broadley, S.A., Shomura, Y., Bracher, A. & Hartl, F.U. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J. 25, 2519–2528 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Raviol, H., Sadlish, H., Rodríguez, F., Mayer, M.P. & Bukau, B. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J. 25, 2510–2518 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shaner, L., Sousa, R. & Morano, K.A. Characterization of Hsp70 binding and nucleotide exchange by the yeast Hsp110 chaperone Sse1. Biochemistry 45, 15075–15084 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Mayer, M.P. & Bukau, B. Regulation of Hsp70 chaperones by co-chaperones. in Protein Folding Handbook (eds. Buchner, J. & Kiefhaber, T.) 516–562 (Wiley-VCH, Weinheim, 2005).

    Chapter  Google Scholar 

  30. Xu, Z., Horwich, A.L. & Sigler, P.B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741–750 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Geissler, S., Siegers, K. & Schiebel, E. A novel protein complex promoting formation of functional α- and γ-tubulin. EMBO J. 17, 952–966 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vainberg, I.E. et al. Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93, 863–873 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. López-Fanarraga, M., Avila, J., Guasch, A., Coll, M. & Zabala, J.C. Postchaperonin tubulin folding cofactors and their role in microtubule dynamics. J. Struct. Biol. 135, 219–229 (2001).

    Article  PubMed  Google Scholar 

  34. Lukov, G.L., Hu, T., McLaughlin, J.N., Hamm, H.E. & Willardson, B.M. Phosducin-like protein acts as a molecular chaperone for G protein βγ dimer assembly. EMBO J. 24, 1965–1975 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stirling, P.C. et al. PhLP3 modulates CCT-mediated actin and tubulin folding via ternary complexes with substrates. J. Biol. Chem. 281, 7012–7021 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Gebauer, M., Melki, R. & Gehring, U. The chaperone cofactor Hop/p60 interacts with the cytosolic chaperonin-containing TCP-1 and affects its nucleotide exchange and protein folding activities. J. Biol. Chem. 273, 29475–29480 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Dittmar, K.D. & Pratt, W.B. Folding of the glucocorticoid receptor by the reconstituted Hsp90-based chaperone machinery. The initial Hsp90.p60.hsp70-dependent step is sufficient for creating the steroid binding conformation. J. Biol. Chem. 272, 13047–13054 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Thulasiraman, V., Yang, C.F. & Frydman, F. In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J. 18, 85–95 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moro, F., Fernandez, V. & Muga, A. Interdomain interaction through helices A and B of DnaK peptide binding domain. FEBS Lett. 533, 119–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Montgomery, D., Jordan, R., McMacken, R. & Freire, E. Thermodynamic and structural analysis of the folding/unfolding transitions of Escherichia coli molecular chaperone DnaK. J. Mol. Biol. 232, 680–692 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Scheres, S.H.W. et al. Maximum-likelihood multi-reference refinement for electron microscopy images. J. Mol. Biol. 348, 139–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Sorzano, C.O.S. et al. XMIPP: a new generation of an open-source image processing package for electron microscopy. J. Struct. Biol. 148, 194–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Frank, J. Three-dimensional Electron Microscopy of Macromolecular Assemblies 182–246 (Academic, San Diego, 1996).

    Book  Google Scholar 

  45. Chacon, P. & Wriggers, W. Multi-resolution contour-based fitting of macromolecular structures. J. Mol. Biol. 317, 375–384 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Notredame, C., Higgins, D.G. & Heringa, J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Abascal, F., Zardoya, R. & Posada, D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104–2105 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Rodríguez for technical assistance and the Barcelona Supercomputing Center, Centro Nacional de Supercomputación, for providing computer resources. This work was supported by grants CSD2006-00023, BFU2007-62382/BMC and GEN2003-20642-C09-06 from the Spanish Ministry of Education (J.M.V.) and BFU2007-64452 (A.M.). This work was also funded by the EU-grant '3D repertoire' (LSHG-CT-2005-512028) and by the grant RGP63/2004 from the Human Frontiers Scientific Program.

Author information

Authors and Affiliations

Authors

Contributions

J.C. purified proteins and did part of the EM and image processing; J.M.-B. did part of the image processing and the docking analysis; S.H.W.S. did part of the image processing; R.S. generated several Hsc70 mutants; F.M. and A.M. generated several DnaK mutants; E.L.-V. and P.G.-P. did the homology analysis and designed some experiments; J.L.C. did part of the electron microscopy and designed some experiments; J.M.V. did the cryo-EM and devised some experiments.

Corresponding author

Correspondence to José M Valpuesta.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 2467 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuéllar, J., Martín-Benito, J., Scheres, S. et al. The structure of CCT–Hsc70NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin. Nat Struct Mol Biol 15, 858–864 (2008). https://doi.org/10.1038/nsmb.1464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1464

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing