Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular functions of the histone acetyltransferase chaperone complex Rtt109–Vps75

Abstract

Histone acetylation and nucleosome remodeling regulate DNA damage repair, replication and transcription. Rtt109, a recently discovered histone acetyltransferase (HAT) from Saccharomyces cerevisiae, functions with the histone chaperone Asf1 to acetylate lysine K56 on histone H3 (H3K56), a modification associated with newly synthesized histones. In vitro analysis of Rtt109 revealed that Vps75, a Nap1 family histone chaperone, could also stimulate Rtt109-dependent acetylation of H3K56. However, the molecular function of the Rtt109–Vps75 complex remains elusive. Here we have probed the molecular functions of Vps75 and the Rtt109–Vps75 complex through biochemical, structural and genetic means. We find that Vps75 stimulates the kcat of histone acetylation by 100-fold relative to Rtt109 alone and enhances acetylation of K9 in the H3 histone tail. Consistent with the in vitro evidence, cells lacking Vps75 showed a substantial reduction (60%) in H3K9 acetylation during S phase. X-ray structural, biochemical and genetic analyses of Vps75 indicate a unique, structurally dynamic Nap1-like fold that suggests a potential mechanism of Vps75-dependent activation of Rtt109. Together, these data provide evidence for a multifunctional HAT–chaperone complex that acetylates histone H3 and deposits H3-H4 onto DNA, linking histone modification and nucleosome assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rtt109–Vps75 acetylates residues within the H3 tail.
Figure 2: Rtt109 stimulates histone-deposition activity of Vps75.
Figure 3: Structure of Vps75.
Figure 4: Dimerization between domain I of Vps75 monomers.
Figure 5: Comparison of surface electrostatics of the Nap1 family of histone chaperones.
Figure 6: Characterization of Vps75 acidic cavity mutants.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Shahbazian, M.D. & Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 76, 75–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Avvakumov, N. & Cote, J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26, 5395–5407 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Baker, S.P. & Grant, P.A. The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 26, 5329–5340 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Yang, X.J. & Ullah, M. MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells. Oncogene 26, 5408–5419 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Masumoto, H., Hawke, D., Kobayashi, R. & Verreault, A. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436, 294–298 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Xu, F., Zhang, K. & Grunstein, M. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121, 375–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Hyland, E.M. et al. Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol. Cell. Biol. 25, 10060–10070 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Celic, I. et al. The sirtuins Hst3 and Hst4p preserve genome integrity by controlling histone H3 lysine 56 deacetylation. Curr. Biol. 16, 1280–1289 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Rufiange, A., Jacques, P.E., Bhat, W., Robert, F. & Nourani, A. Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol. Cell 27, 393–405 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Garcia, B.A. et al. Organismal differences in post-translational modifications in histones H3 and H4. J. Biol. Chem. 282, 7641–7655 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Xhemalce, B. et al. Regulation of histone H3 lysine 56 acetylation in Schizosaccharomyces pombe. J. Biol. Chem. 282, 15040–15047 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Schneider, J., Bajwa, P., Johnson, F.C., Bhaumik, S.R. & Shilatifard, A. Rtt109 is required for proper H3K56 acetylation: a chromatin mark associated with the elongating RNA polymerase II. J. Biol. Chem. 281, 37270–37274 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Tsubota, T. et al. Histone H3–K56 acetylation is catalyzed by histone chaperone-dependent complexes. Mol. Cell 25, 703–712 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Han, J. et al. Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315, 653–655 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Driscoll, R., Hudson, A. & Jackson, S.P. Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315, 649–652 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Allis, C.D. et al. New nomenclature for chromatin-modifying enzymes. Cell 131, 633–636 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Han, J., Zhou, H., Li, Z., Xu, R.M. & Zhang, Z. The Rtt109–Vps75 histone acetyltransferase complex acetylates non-nucleosomal histone H3. J. Biol. Chem. 282, 14158–14164 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. De Koning, L., Corpet, A., Haber, J.E. & Almouzni, G. Histone chaperones: an escort network regulating histone traffic. Nat. Struct. Mol. Biol. 14, 997–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Eitoku, M., Sato, L., Senda, T. & Horikoshi, M. Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly. Cell. Mol. Life Sci. 65, 414–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Chang, L. et al. Histones in transit: cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells. Biochemistry 36, 469–480 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Smith, S. & Stillman, B. Stepwise assembly of chromatin during DNA replication in vitro. EMBO J. 10, 971–980 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Verreault, A., Kaufman, P.D., Kobayashi, R. & Stillman, B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95–104 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Glowczewski, L., Waterborg, J.H. & Berman, J.G. Yeast chromatin assembly complex 1 protein excludes nonacetylatable forms of histone H4 from chromatin and the nucleus. Mol. Cell. Biol. 24, 10180–10192 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Selth, L. & Svejstrup, J.Q. Vps75, a new yeast member of the NAP histone chaperone family. J. Biol. Chem. 282, 12358–12362 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Han, J., Zhou, H., Li, Z., Xu, R.M. & Zhang, Z. Acetylation of lysine 56 of histone H3 catalyzed by RTT109 and regulated by ASF1 is required for replisome integrity. J. Biol. Chem. 282, 28587–28596 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Ito, T., Ikehara, T., Nakagawa, T., Kraus, W.L. & Muramatsu, M. p300-mediated acetylation facilitates the transfer of histone H2A–H2B dimers from nucleosomes to a histone chaperone. Genes Dev. 14, 1899–1907 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Asahara, H. et al. Dual roles of p300 in chromatin assembly and transcriptional activation in cooperation with nucleosome assembly protein 1 in vitro. Mol. Cell. Biol. 22, 2974–2983 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Seo, S.B. et al. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell 104, 119–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Karetsou, Z., Martic, G., Sflomos, G. & Papamarcaki, T. The histone chaperone SET/TAF-Iβ interacts functionally with the CREB-binding protein. Biochem. Biophys. Res. Commun. 335, 322–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Park, Y.J., Chodaparambil, J.V., Bao, Y., McBryant, S.J. & Luger, K. Nucleosome assembly protein 1 exchanges histone H2A–H2B dimers and assists nucleosome sliding. J. Biol. Chem. 280, 1817–1825 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Park, Y.J. & Luger, K. Structure and function of nucleosome assembly proteins. Biochem. Cell Biol. 84, 549–558 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Kuo, M.H. et al. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383, 269–272 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Adkins, M.W., Carson, J.J., English, C.M., Ramey, C.J. & Tyler, J.K. The histone chaperone anti-silencing stimulates the acetylation of newly synthesized histone H3 in S-phase. J. Biol. Chem. 282, 1334–1340 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Eckey, M., Hong, W., Papaioannou, M. & Baniahmad, A. The nucleosome assembly activity of NAP1 is enhanced by Alien. Mol. Cell. Biol. 27, 3557–3568 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Park, Y.J. & Luger, K. The structure of nucleosome assembly protein 1. Proc. Natl. Acad. Sci. USA 103, 1248–1253 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Muto, S. et al. Relationship between the structure of SET/TAF-Iβ/INHAT and its histone chaperone activity. Proc. Natl. Acad. Sci. USA 104, 4285–4290 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Miyaji-Yamaguchi, M., Okuwaki, M. & Nagata, K. Coiled-coil structure-mediated dimerization of template activating factor-I is critical for its chromatin remodeling activity. J. Mol. Biol. 290, 547–557 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Park, Y.J., McBryant, S.J. & Luger, K. A β-hairpin comprising the nuclear localization sequence sustains the self-associated states of nucleosome assembly protein 1. J. Mol. Biol. 375, 1076–1085 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. DeLano, W.L. MacPyMOL: a PyMOL-nased Molecular Graphics Application for MacOS X. (DeLano Scientific LLC, South San Francisco, 2005).

    Google Scholar 

  41. Recht, J. et al. Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc. Natl. Acad. Sci. USA 103, 6988–6993 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Collins, S.R. et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Fillingham, J. et al. Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109. Mol. Cell. Biol. 28, 4342–4353 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Mousson, F. et al. Structural basis for the interaction of Asf1 with histone H3 and its functional implications. Proc. Natl. Acad. Sci. USA 102, 5975–5980 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. English, C.M., Adkins, M.W., Carson, J.J., Churchill, M.E. & Tyler, J.K. Structural basis for the histone chaperone activity of Asf1. Cell 127, 495–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Natsume, R. et al. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446, 338–341 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Malay, A.D., Umehara, T., Matsubara, K., Padmanabhan, B. & Yokoyama, S. Crystal structures of fission yeast histone chaperone Asf1 complexed with the Hip1 B domain or the Cac2 C-terminus. J. Biol. Chem. 283, 14022–14031 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Berndsen, C.E. et al. Nucleosome recognition by the Piccolo NuA4 histone acetyltransferase complex. Biochemistry 46, 2091–2099 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Tanaka, Y. et al. Expression and purification of recombinant human histones. Methods 33, 3–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Sambrook, J. & Russell, D.W. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001).

    Google Scholar 

  52. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Kaiser, C., Michaelis, S. & Mitchell, A. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual Vol. vii 234 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1994).

    Google Scholar 

  54. Schuck, P., Perugini, M.A., Gonzales, N.R., Howlett, G.J. & Schubert, D. Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys. J. 82, 1096–1111 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Demeler, B. & van Holde, K.E. Sedimentation velocity analysis of highly heterogeneous systems. Anal. Biochem. 335, 279–288 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank S. Anderson at the Life Sciences Collaborative Access Team (LS-CAT) for assistance in data collection on the native Vps75. We also thank K. Satyshur for assistance in crystal screening, and we thank M. Foley and K. Crowley for assistance with the AUC experiment. Finally, we thank members of the Denu and Keck laboratories for helpful comments and critique of the work, especially K. Arnold, B. Smith, L. Li and M. Killoran. This work was supported in part by a predoctoral fellowship from the American Heart Association to C.E.B., US National Institutes of Health (NIH) grant GM059785 to J.M.D., a Shaw award from the Greater Milwaukee Foundation to J.L.K. and NIH grant GM055712 to P.D.K.

Author information

Authors and Affiliations

Authors

Contributions

J.M.D., J.L.K., P.D.K., T.T. and C.E.B. developed experiments; C.E.B. performed biochemical analyses of Rtt109–Vps75; S.L. performed MS experiments; T.T. performed yeast cell-cycle analyses; C.E.B., S.E.L., J.M.H. and J.L.K. performed crystallographic experiments; C.E.B., T.T., S.L., J.L.K., P.D.K. and J.M.D. made figures and wrote the manuscript; all authors read and approved the final submission of manuscript.

Corresponding authors

Correspondence to Paul D Kaufman, James L Keck or John M Denu.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1 and Supplementary Methods (PDF 2401 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berndsen, C., Tsubota, T., Lindner, S. et al. Molecular functions of the histone acetyltransferase chaperone complex Rtt109–Vps75. Nat Struct Mol Biol 15, 948–956 (2008). https://doi.org/10.1038/nsmb.1459

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1459

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing