Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanics of membrane fusion

Abstract

Diverse membrane fusion reactions in biology involve close contact between two lipid bilayers, followed by the local distortion of the individual bilayers and reformation into a single, merged membrane. We consider the structures and energies of the fusion intermediates identified in experimental and theoretical work on protein-free lipid bilayers. On the basis of this analysis, we then discuss the conserved fusion-through-hemifusion pathway of merger between biological membranes and propose that the entire progression, from the close juxtaposition of membrane bilayers to the expansion of a fusion pore, is controlled by protein-generated membrane stresses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fusion-through hemifusion pathway of lipid bilayer fusion.
Figure 2: The stalk is the key intermediate in most of the theoretical models developed with the continuous and the simulation approaches.
Figure 3: Hypothetical pathway of biological fusion powered by protein-generated membrane stresses.

Similar content being viewed by others

References

  1. Duelli, D. & Lazebnik, Y. Cell-to-cell fusion as a link between viruses and cancer. Nat. Rev. Cancer 7, 968–976 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Sapir, A., Avinoam, O., Podbilewicz, B. & Chernomordik, L.V. Viral and developmental cell fusion mechanisms: conservation and divergence. Dev. Cell 14, 11–21 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, E.H., Grote, E., Mohler, W. & Vignery, A. Cell-cell fusion. FEBS Lett. 581, 2181–2193 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Kielian, M. & Rey, F.A. Virus membrane-fusion proteins: more than one way to make a hairpin. Nat. Rev. Microbiol. 4, 67–76 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weissenhorn, W., Hinz, A. & Gaudin, Y. Virus membrane fusion. FEBS Lett. 581, 2150–2155 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Earp, L.J., Delos, S.E., Park, H.E. & White, J.M. The many mechanisms of viral membrane fusion proteins. Curr. Top. Microbiol. Immunol. 285, 25–66 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jahn, R. & Scheller, R.H. SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Hoppins, S., Lackner, L. & Nunnari, J. The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 76, 751–780 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. McNeil, P.L. & Steinhardt, R.A. Plasma membrane disruption: repair, prevention, adaptation. Annu. Rev. Cell Dev. Biol. 19, 697–731 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Martens, S. & McMahon, H.T. Disparate and common players in cellular membrane fusion events. Nat. Rev. Mol. Cell Biol. advance online publication, doi:10.1038/nrm2417 (21 May 2008).

  11. Wickner, W. & Schekman, R. Membrane fusion. Nat. Struct. Mol. Biol. 15, 658–664 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rizo, J. & Rosenmund, C. Synaptic vesicle fusion. Nat. Struct. Mol. Biol. 15, 665–674 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harrison, S.C. Viral membrane fusion. Nat. Struct. Mol. Biol. 15, 690–698 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chernomordik, L.V. & Kozlov, M.M. Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72, 175–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Lentz, B.R., Malinin, V., Haque, M.E. & Evans, K. Protein machines and lipid assemblies: current views of cell membrane fusion. Curr. Opin. Struct. Biol. 10, 607–615 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Jackson, M.B. & Chapman, E.R. The fusion pores of Ca2+-triggered exocytosis. Nat. Struct. Mol. Biol. 15, 684–689 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chernomordik, L.V., Melikyan, G.B. & Chizmadzhev, Y.A. Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim. Biophys. Acta 906, 309–352 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Chanturiya, A., Chernomordik, L.V. & Zimmerberg, J. Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. Proc. Natl. Acad. Sci. USA 94, 14423–14428 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, L. & Huang, H.W. A rhombohedral phase of lipid containing a membrane fusion intermediate structure. Biophys. J. 84, 1808–1817 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Malinin, V.S., Frederik, P. & Lentz, B.R. Osmotic and curvature stress affect PEG-induced fusion of lipid vesicles but not mixing of their lipids. Biophys. J. 82, 2090–2100 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cohen, F.S., Zimmerberg, J. & Finkelstein, A. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane. J. Gen. Physiol. 75, 251–270 (1980).

    Article  CAS  PubMed  Google Scholar 

  22. Ohki, S. Surface tension, hydration energy and membrane fusion. in Molecular Mechanisms of Membrane Fusion (eds. Ohki, S., Doyle, D., Flanagan, T.D., Hui, S.W. & Mayhew, E.) 123–139 (Plenum, New York, 1988).

    Chapter  Google Scholar 

  23. Kozlov, M.M., Leikin, S.L., Chernomordik, L.V., Markin, V.S. & Chizmadzhev, Y.A. Stalk mechanism of vesicle fusion. Intermixing of aqueous contents. Eur. Biophys. J. 17, 121–129 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Kozlov, M.M. & Markin, V.S. Possible mechanism of membrane fusion. Biophysics 28, 255–261 (1983). The work was the first to propose the stalk intermediate of membrane fusion and presents calculations of the stalk energy as a function of the spontaneous curvature of the membrane monolayers.

    CAS  Google Scholar 

  25. Kozlovsky, Y., Chernomordik, L. & Kozlov, M.M. Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm. Biophys. J. 83, 2634–2651 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kozlovsky, Y., Efrat, A., Siegel, D.P. & Kozlov, M.M. Stalk phase formation: effects of dehydration and saddle splay modulus. Biophys. J. 87, 2508–2521 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kozlovsky, Y. & Kozlov, M.M. Stalk model of membrane fusion: solution of energy crisis. Biophys. J. 82, 882–895 (2002). Energy of fusion stalk is computed using the tilt-splay model for membrane mechanics. The analysis predicts a biologically feasible energy barrier of stalk formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Markin, V. & Albanesi, J. Membrane fusion: stalk model revisited. Biophys. J. 82, 693–712 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuzmin, P.I., Zimmerberg, J., Chizmadzhev, Y.A. & Cohen, F.S. A quantitative model for membrane fusion based on low-energy intermediates. Proc. Natl. Acad. Sci. USA 98, 7235–7240 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Siegel, D.P. Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophys. J. 65, 2124–2140 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. May, S. Structure and energy of fusion stalks: The role of membrane edges. Biophys. J. 83, 2969–2980 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Katsov, K., Muller, M. & Schick, M. Field theoretic study of bilayer membrane fusion. I. Hemifusion mechanism. Biophys. J. 87, 3277–3290 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Katsov, K., Muller, M. & Schick, M. Field theoretic study of bilayer membrane fusion: II. Mechanism of a stalk-hole complex. Biophys. J. 90, 915–926 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Marrink, S.J. & Mark, A.E. The Mechanism of Vesicle Fusion as Revealed by Molecular Dynamics Simulations. J. Am. Chem. Soc. 125, 11144–11145 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Marrink, S.J. & Tieleman, D.P. Molecular dynamics simulation of spontaneous membrane fusion during a cubic-hexagonal phase transition. Biophys. J. 83, 2386–2392 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Knecht, V. & Marrink, S.J. Molecular dynamics simulations of lipid vesicle fusion in atomic detail. Biophys. J. 92, 4254–4261 (2007). The work presents the molecular dynamic simulation of membrane fusion in atomic detail, largely confirms the fusion pathway through a hemifusion diaphragm and provides a computational basis for more detailed investigation of the fusion intermediates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Muller, M., Katsov, K. & Schick, M. A new mechanism of model membrane fusion determined from Monte Carlo simulation. Biophys. J. 85, 1611–1623 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Noguchi, H. & Takasu, M. Self-assembly of amphiphiles into vesicles: A Brownian dynamics simulation. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 64, 041913 (2001).

    CAS  Google Scholar 

  39. Noguchi, H. & Takasu, M. Fusion pathways of vesicles: a Brownian dynamics simulation. J. Chem. Phys. 115, 9547–9551 (2001).

    Article  CAS  Google Scholar 

  40. Grafmuller, A., Shillcock, J. & Lipowsky, R. Pathway of membrane fusion with two tension-dependent energy barriers. Phys. Rev. Lett. 98, 218101 (2007).

    Article  PubMed  CAS  Google Scholar 

  41. Shillcock, J.C. & Lipowsky, R. Tension-induced fusion of bilayer membranes and vesicles. Nat. Mater. 4, 225–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Efrat, A., Chernomordik, L.V. & Kozlov, M.M. Point-like protrusion as a prestalk intermediate in membrane fusion pathway. Biophys. J. 92, L61–L63 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hamm, M. & Kozlov, M.M. Tilt model of inverted amphiphilic mesophases. Eur. Phys. J. B 6, 519–528 (1998).

    Article  CAS  Google Scholar 

  44. Hamm, M. & Kozlov, M.M. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E 3, 323–335 (2000).

    Article  CAS  Google Scholar 

  45. May, S., Kozlovsky, Y., Ben-Shaul, A. & Kozlov, M.M. Tilt modulus of a lipid monolayer. Eur. Phys. J. E 14, 299–308 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Siegel, D.P. & Kozlov, M.M. The gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophys. J. 87, 366–374 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, J.Y. & Schick, M. Dependence of the energies of fusion on the intermembrane separation: optimal and constrained. J. Chem. Phys. 127, 075102 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, J.Y. & Schick, M. Field theoretic study of bilayer membrane fusion III: membranes with leaves of different composition. Biophys. J. 92, 3938–3948 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, J.Y. & Schick, M. Calculation of free energy barriers to the fusion of small vesicles. Biophys. J. 94, 1699–1706 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marrink, S.J., de Vries, A.H. & Mark, A.E. Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 108, 750–760 (2004).

    Article  CAS  Google Scholar 

  51. Lindahl, E. & Edholm, O. Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys. J. 79, 426–433 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, L. & Huang, H.W. Observation of a membrane fusion intermediate structure. Science 297, 1877–1879 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Cornell, B.A., Fletcher, G.C., Middlehurst, J. & Separovic, F. The lower limit to the size of small sonicated phospholipid vesicles. Biochim. Biophys. Acta 690, 15–19 (1982).

    Article  CAS  PubMed  Google Scholar 

  54. Kasson, P.M. & Pande, V.S. Control of membrane fusion mechanism by lipid composition: predictions from ensemble molecular dynamics. PLoS Comput. Biol. 3, e220 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Chernomordik, L.V., Melikyan, G.B., Abidor, I.G., Markin, V.S. & Chizmadzhev, Y.A. The shape of lipid molecules and monolayer membrane fusion. Biochim. Biophys. Acta 812, 643–655 (1985).

    Article  CAS  Google Scholar 

  56. Kozlov, M.M. & Chernomordik, L.V. A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements. Biophys. J. 75, 1384–1396 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martens, S., Kozlov, M.M. & McMahon, H.T. How synaptotagmin promotes membrane fusion. Science 316, 1205–1208 (2007). The work demonstrates the ability of synaptotagmin C 2 to bend membranes into 17-nm-diameter tubes with fusogenic end caps and suggests a new model of protein mediated membrane fusion based on calcium-dependent insertion of the synaptotagmin C 2 domain into the membrane matrix.

    Article  CAS  PubMed  Google Scholar 

  58. Hed, G. & Safran, S.A. Initiation and dynamics of hemifusion in lipid bilayers. Biophys. J. 85, 381–389 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chernomordik, L. Non-bilayer lipids and biological fusion intermediates. Chem. Phys. Lipids 81, 203–213 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Blood, P.D. & Voth, G.A. Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 103, 15068–15072 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ayton, G.S., Blood, P.D. & Voth, G.A. Membrane remodeling from N-BAR domain interactions: insights from multi-scale simulation. Biophys. J. 92, 3595–3602 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Campelo, F., McMahon, H.T. & Kozlov, M.M. The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys. J. (in the press) (2008).

    Google Scholar 

  63. Chernomordik, L.V., Zimmerberg, J. & Kozlov, M.M. Membranes of the world unite! J. Cell Biol. 175, 201–207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chernomordik, L.V., Frolov, V.A., Leikina, E., Bronk, P. & Zimmerberg, J. The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J. Cell Biol. 140, 1369–1382 (1998). The first work (i) describing hemifusion mediated by wild-type protein fusogen, (ii) identifying restricted hemifusion intermediates and (iii) reporting the dependence of fusion pore formation on the lipid composition of the distal membrane leaflets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zimmerberg, J., Blumenthal, R., Sarkar, D.P., Curran, M. & Morris, S.J. Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion. J. Cell Biol. 127, 1885–1894 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Leikina, E. & Chernomordik, L.V. Reversible merger of membranes at the early stage of influenza hemagglutinin-mediated fusion. Mol. Biol. Cell 11, 2359–2371 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Markosyan, R.M., Bates, P., Cohen, F.S. & Melikyan, G.B. A study of low pH-induced refolding of Env of avian sarcoma and leukosis virus into a six-helix bundle. Biophys. J. 87, 3291–3298 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zaitseva, E., Mittal, A., Griffin, D.E. & Chernomordik, L.V. Class II fusion protein of alphaviruses drives membrane fusion through the same pathway as class I proteins. J. Cell Biol. 169, 167–177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yoon, T.Y., Okumus, B., Zhang, F., Shin, Y.K. & Ha, T. Multiple intermediates in SNARE-induced membrane fusion. Proc. Natl. Acad. Sci. USA 103, 19731–19736 (2006). By imaging real-time dynamics of single fusion events between the SNARE-carrying liposomes, this work identifies fusion intermediates with distinct extents of lipid mixing and characterizes the dwell times of docked and hemifused states and the lifetime of early fusion pores.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Melikyan, G.B., Niles, W.D. & Cohen, F.S. Influenza virus hemagglutinin-induced cell-planar bilayer fusion: quantitative dissection of fusion pore kinetics into stages. J. Gen. Physiol. 102, 1151–1170 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Mittal, A., Leikina, E., Chernomordik, L.V. & Bentz, J. Kinetically differentiating influenza hemagglutinin fusion and hemifusion machines. Biophys. J. 85, 1713–1724 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Giraudo, C.G. et al. SNAREs can promote complete fusion and hemifusion as alternative outcomes. J. Cell Biol. 170, 249–260 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jahn, R., Lang, T. & Sudhof, T.C. Membrane fusion. Cell 112, 519–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Zimmerberg, J. & Chernomordik, L.V. Neuroscience. Synaptic membranes bend to the will of a neurotoxin. Science 310, 1626–1627 (2005).

    Article  PubMed  Google Scholar 

  75. Zampighi, G.A. et al. Conical electron tomography of a chemical synapse: vesicles docked to the active zone are hemi-fused. Biophys. J. 91, 2910–2918 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wong, J.L., Koppel, D.E., Cowan, A.E. & Wessel, G.M. Membrane hemifusion is a stable intermediate of exocytosis. Dev. Cell 12, 653–659 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K. & McNew, J.A. Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat. Struct. Mol. Biol. 13, 748–750 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Razinkov, V.I., Melikyan, G.B., Epand, R.M., Epand, R.F. & Cohen, F.S. Effects of spontaneous bilayer curvature on influenza virus-mediated fusion pores. J. Gen. Physiol. 112, 409–422 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chernomordik, L.V., Leikina, E., Frolov, V., Bronk, P. & Zimmerberg, J. An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J. Cell Biol. 136, 81–94 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chernomordik, L.V. et al. Lysolipids reversibly inhibit Ca2+-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett. 318, 71–76 (1993). This paper demonstrates that lipids known to inhibit hemifusion stage of fusion between protein-free bilayers also inhibit disparate biological fusion reactions, suggesting that these reactions proceed through a common hemifusion intermediate.

    Article  CAS  PubMed  Google Scholar 

  81. Melikyan, G.B., Barnard, R.J., Abrahamyan, L.G., Mothes, W. & Young, J.A. Imaging individual retroviral fusion events: from hemifusion to pore formation and growth. Proc. Natl. Acad. Sci. USA 102, 8728–8733 (2005). Different stages of virus–cell fusion mediated by avian sarcoma and leukosis virus envelope glycoproteins were dissected by imaging single virions. The findings suggest that fusion involves a direct transition from hemifusion into a small and then growing pore within a small virus-2013 cell contact zone.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Markosyan, R.M., Cohen, F.S. & Melikyan, G.B. Time-resolved imaging of HIV-1 Env-mediated lipid and content mixing between a single virion and cell membrane. Mol. Biol. Cell 16, 5502–5513 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, T., Wang, T., Chapman, E.R. & Weisshaar, J.C. Productive hemifusion intermediates in fast vesicle fusion driven by neuronal SNAREs. Biophys. J. 94, 1303–1314 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Frolov, V.A., Dunina-Barkovskaya, A.Y., Samsonov, A.V. & Zimmerberg, J. Membrane permeability changes at early stages of influenza hemagglutinin-mediated fusion. Biophys. J. 85, 1725–1733 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lindau, M. & Almers, W. Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr. Opin. Cell Biol. 7, 509–517 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Jackson, M.B. & Chapman, E.R. Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu. Rev. Biophys. Biomol. Struct. 35, 135–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Jackson, M.B. In search of the fusion pore of exocytosis. Biophys. Chem. 126, 201–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Kemble, G.W., Danieli, T. & White, J.M. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 76, 383–391 (1994). Replacing transmembrane domain of influenza hemagglutinin with a lipid anchor yielded the first direct demonstration that protein fusogens can induce hemifusion and emphasized the functional importance of transmembrane domain of the fusogen.

    Article  CAS  PubMed  Google Scholar 

  89. Cleverley, D.Z. & Lenard, J. The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. Proc. Natl. Acad. Sci. USA 95, 3425–3430 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Grote, E., Baba, M., Ohsumi, Y. & Novick, P.J. Geranylgeranylated SNAREs are dominant inhibitors of membrane fusion. J. Cell Biol. 151, 453–466 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu, Y., Zhang, F., Su, Z., McNew, J.A. & Shin, Y.K. Hemifusion in SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 12, 417–422 (2005). This study on fusion between SNARE-proteoliposomes was the first direct demonstration that intracellular fusogens can mediate hemifusion.

    Article  CAS  PubMed  Google Scholar 

  92. Langosch, D., Hofmann, M. & Ungermann, C. The role of transmembrane domains in membrane fusion. Cell. Mol. Life Sci. 64, 850–864 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Melikyan, G.B., Lin, S., Roth, M.G. & Cohen, F.S. Amino acid sequence requirements of the transmembrane and cytoplasmic domains of influenza virus hemagglutinin for viable membrane fusion. Mol. Biol. Cell 10, 1821–1836 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Frolov, V., Cho, M.-S., Bronk, P., Reese, T. & Zimmerberg, J. Multiple local contact sites are induced by GPI-linked influenza hemagglutinin during hemifusion and flickering pore formation. Traffic 1, 622–630 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Markosyan, R.M., Cohen, F.S. & Melikyan, G.B. The lipid-anchored ectodomain of influenza virus hemagglutinin (GPI-HA) is capable of inducing nonenlarging fusion pores. Mol. Biol. Cell 11, 1143–1152 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McNew, J.A. et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol. 150, 105–117 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jun, Y., Xu, H., Thorngren, N. & Wickner, W. Sec18p and Vam7p remodel trans-SNARE complexes to permit a lipid-anchored R-SNARE to support yeast vacuole fusion. EMBO J. 26, 4935–4945 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jun, Y. & Wickner, W. Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing. Proc. Natl. Acad. Sci. USA 104, 13010–13015 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gaudin, Y. Rabies virus-induced membrane fusion pathway. J. Cell Biol. 150, 601–612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vogel, S.S., Leikina, E.A. & Chernomordik, L.V. Lysophosphatidylcholine reversibly arrests exocytosis and viral fusion at a stage between triggering and membrane merger. J. Biol. Chem. 268, 25764–25768 (1993).

    Article  CAS  PubMed  Google Scholar 

  101. Reese, C., Heise, F. & Mayer, A. Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 436, 410–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Amatore, C. et al. Regulation of exocytosis in chromaffin cells by trans-insertion of lysophosphatidylcholine and arachidonic acid into the outer leaflet of the cell membrane. ChemBioChem 7, 1998–2003 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Churchward, M.A. et al. Specific lipids supply critical negative spontaneous curvature–an essential component of native Ca2+-triggered membrane fusion. Biophys. J. 94, 3976–3986 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ramos, C., Rafikova, E.R., Melikov, K. & Chernomordik, L.V. Transmembrane proteins are not required for early stages of nuclear envelope assembly. Biochem. J. 400, 393–400 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Podbilewicz, B. et al. The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. Dev. Cell 11, 471–481 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Kobayashi, T. et al. Separation and characterization of late endosomal membrane domains. J. Biol. Chem. 277, 32157–32164 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Byrne, R.D. et al. PLCγ is enriched on poly-phosphoinositide-rich vesicles to control nuclear envelope assembly. Cell Signal. 19, 913–922 (2006).

    Article  PubMed  CAS  Google Scholar 

  108. Rigoni, M. et al. Equivalent effects of snake PLA2 neurotoxins and lysophospholipid-fatty acid mixtures. Science 310, 1678–1680 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Blumenthal, R., Clague, M.J., Durell, S.R. & Epand, R.M. Membrane fusion. Chem. Rev. 103, 53–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Lai, A.L., Park, H., White, J.M. & Tamm, L.K. Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity. J. Biol. Chem. 281, 5760–5770 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Shmulevitz, M. & Duncan, R. A new class of fusion-associated small transmembrane (FAST) proteins encoded by the non-enveloped fusogenic reoviruses. EMBO J. 19, 902–912 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Roche, S., Bressanelli, S., Rey, F.A. & Gaudin, Y. Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science 313, 187–191 (2006). This high resolution x-ray study, along with an earlier work of this group, characterizes a new class of viral fusion proteins (class III) that uses a bipartite fusion domain consisting of two short, noncontiguous hydrophobic loops.

    Article  CAS  PubMed  Google Scholar 

  113. Antonny, B. Membrane deformation by protein coats. Curr. Opin. Cell Biol. 18, 386–394 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. McMahon, H.T. & Gallop, J.L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Chapman, E.R. & Davis, A.F. Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J. Biol. Chem. 273, 13995–14001 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Ford, M.G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Cohen, F.S. & Melikyan, G.B. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199, 1–14 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Zimmerberg, J., Akimov, S.A. & Frolov, V. Synaptotagmin: fusogenic role for calcium sensor? Nat. Struct. Mol. Biol. 13, 301–303 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Kozlov, M.M. & Chernomordik, L.V. The protein coat in membrane fusion: lessons from fission. Traffic 3, 256–267 (2002).

    Article  PubMed  Google Scholar 

  120. Leikina, E. et al. Influenza hemagglutinins outside of the contact zone are necessary for fusion pore expansion. J. Biol. Chem. 279, 26526–26532 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Yang, X., Kurteva, S., Ren, X., Lee, S. & Sodroski, J. Stoichiometry of envelope glycoprotein trimers in the entry of human immunodeficiency virus type 1. J. Virol. 79, 12132–12147 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Knecht, V. & Grubmuller, H. Mechanical coupling via the membrane fusion SNARE protein syntaxin 1A: a molecular dynamics study. Biophys. J. 84, 1527–1547 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize for not citing many important papers because of space limitations. Figure 2b,c were kindly provided by M. Schick and S.J. Marrink, respectively. The work of L.V.C. is supported by the Intramural Research Program of the US National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development. The work of M.M.K. is supported by the Israel Science Foundation and Marie Curie Network 'Flippases'.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonid V Chernomordik or Michael M Kozlov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernomordik, L., Kozlov, M. Mechanics of membrane fusion. Nat Struct Mol Biol 15, 675–683 (2008). https://doi.org/10.1038/nsmb.1455

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1455

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing