Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast

Abstract

SWI/SNF chromatin-remodeling complexes have crucial roles in transcription and other chromatin-related processes. The analysis of the two members of this class in Saccharomyces cerevisiae, SWI/SNF and RSC, has heavily contributed to our understanding of these complexes. To understand the in vivo functions of SWI/SNF and RSC in an evolutionarily distant organism, we have characterized these complexes in Schizosaccharomyces pombe. Although core components are conserved between the two yeasts, the compositions of S. pombe SWI/SNF and RSC differ from their S. cerevisiae counterparts and in some ways are more similar to metazoan complexes. Furthermore, several of the conserved proteins, including actin-like proteins, are markedly different between the two yeasts with respect to their requirement for viability. Finally, phenotypic and microarray analyses identified widespread requirements for SWI/SNF and RSC on transcription including strong evidence that SWI/SNF directly represses iron-transport genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification of the fission yeast SWI/SNF and RSC complexes.
Figure 2: SWI/SNF and RSC mutants show a range of mutant phenotypes.
Figure 3: Whole-genome expression profiling of SWI/SNF, Arp and RSC deletion mutants.
Figure 4: SWI/SNF is directly required for transcriptional activation of genes.
Figure 5: SWI/SNF represses the transcription of hexose transport and iron-uptake genes.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

References

  1. Cairns, B.R. Chromatin remodeling: insights and intrigue from single-molecule studies. Nat. Struct. Mol. Biol. 14, 989–996 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mohrmann, L. & Verrijzer, C.P. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim. Biophys. Acta 1681, 59–73 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. van Vugt, J.J., Ranes, M., Campsteijn, C. & Logie, C. The ins and outs of ATP-dependent chromatin remodeling in budding yeast: biophysical and proteomic perspectives. Biochim. Biophys. Acta 1769, 153–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Sudarsanam, P., Iyer, V.R., Brown, P.O. & Winston, F. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97, 3364–3369 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dror, V. & Winston, F. The SWI/SNF chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 8227–8235 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chai, B., Huang, J., Cairns, B.R. & Laurent, B.C. Distinct roles for the RSC and SWI/SNF ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 19, 1656–1661 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cairns, B.R. et al. RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249–1260 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Laurent, B.C., Yang, X. & Carlson, M. An essential Saccharomyces cerevisiae gene homologous to SNF2 encodes a helicase-related protein in a new family. Mol. Cell. Biol. 12, 1893–1902 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Angus-Hill, M.L. et al. A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell cycle control. Mol. Cell 7, 741–751 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Damelin, M. et al. The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. Mol. Cell 9, 563–573 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Ng, H.H., Robert, F., Young, R.A. & Struhl, K. Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes Dev. 16, 806–819 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kasten, M. et al. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J. 23, 1348–1359 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Soutourina, J. et al. Rsc4 connects the chromatin remodeler RSC to RNA polymerases. Mol. Cell. Biol. 26, 4920–4933 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parnell, T.J., Huff, J.T. & Cairns, B.R. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 27, 100–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Cao, Y., Cairns, B.R., Kornberg, R.D. & Laurent, B.C. Sfh1p, a component of a novel chromatin-remodeling complex, is required for cell cycle progression. Mol. Cell. Biol. 17, 3323–3334 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsu, J.M., Huang, J., Meluh, P.B. & Laurent, B.C. The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol. Cell. Biol. 23, 3202–3215 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, J., Hsu, J.M. & Laurent, B.C. The RSC nucleosome-remodeling complex is required for Cohesin's association with chromosome arms. Mol. Cell 13, 739–750 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Shim, E.Y. et al. RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol. Cell. Biol. 27, 1602–1613 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Cairns, B.R., Erdjument-Bromage, H., Tempst, P., Winston, F. & Kornberg, R.D. Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. Mol. Cell 2, 639–651 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Simone, C. SWI/SNF: the crossroads where extracellular signaling pathways meet chromatin. J. Cell. Physiol. 207, 309–314 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, W. et al. Purification and biochemical heterogeneity of the mammalian SWI/SNF complex. EMBO J. 15, 5370–5382 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, W. et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 10, 2117–2130 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Martens, J.A. & Winston, F. Recent advances in understanding chromatin remodeling by SWI/SNF complexes. Curr. Opin. Genet. Dev. 13, 136–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Sansam, C.G. & Roberts, C.W. Epigenetics and cancer: altered chromatin remodeling via Snf5 loss leads to aberrant cell cycle regulation. Cell Cycle 5, 621–624 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Grewal, S.I. & Jia, S. Heterochromatin revisited. Nat. Rev. Genet. 8, 35–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Yamada, T. et al. Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J. 23, 1792–1803 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bernal, G. & Maldonado, E. Isolation of a novel complex of the SWI/SNF family from Schizosaccharomyces pombe and its effects on in vitro transcription in nucleosome arrays. Mol. Cell. Biochem. 303, 131–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Wilson, B., Erdjument-Bromage, H., Tempst, P. & Cairns, B.R. The RSC chromatin remodeling complex bears an essential fungal-specific protein module with broad functional roles. Genetics 172, 795–809 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cairns, B.R. et al. Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol. Cell 4, 715–723 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, M. & Shen, X. Nuclear actin and actin-related proteins in chromatin dynamics. Curr. Opin. Cell Biol. 19, 326–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Szerlong, H., Saha, A. & Cairns, B.R. The nuclear actin-related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling. EMBO J. 22, 3175–3187 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Winston, F. & Carlson, M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8, 387–391 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Aslett, M. & Wood, V. Gene Ontology annotation status of the fission yeast genome: preliminary coverage approaches 100%. Yeast 23, 913–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Turi, T.G., Webster, P. & Rose, J.K. Brefeldin A sensitivity and resistance in Schizosaccharomyces pombe. Isolation of multiple genes conferring resistance. J. Biol. Chem. 269, 24229–24236 (1994).

    CAS  PubMed  Google Scholar 

  37. Heiland, S., Radovanovic, N., Hofer, M., Winderickx, J. & Lichtenberg, H. Multiple hexose transporters of Schizosaccharomyces pombe. J. Bacteriol. 182, 2153–2162 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fagerstrom-Billai, F., Durand-Dubief, M., Ekwall, K. & Wright, A.P. Individual subunits of the Ssn6-Tup11/12 corepressor are selectively required for repression of different target genes. Mol. Cell. Biol. 27, 1069–1082 (2007).

    Article  PubMed  Google Scholar 

  39. Mehta, S.V., Patil, V.B., Velmurugan, S., Lobo, Z. & Maitra, P.K. Std1, a gene involved in glucose transport in Schizosaccharomyces pombe. J. Bacteriol. 180, 674–679 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Labbe, S., Pelletier, B. & Mercier, A. Iron homeostasis in the fission yeast Schizosaccharomyces pombe. Biometals 20, 523–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Znaidi, S., Pelletier, B., Mukai, Y. & Labbe, S. The Schizosaccharomyces pombe corepressor Tup11 interacts with the iron-responsive transcription factor Fep1. J. Biol. Chem. 279, 9462–9474 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Minoda, A., Saitoh, S., Takahashi, K. & Toda, T. BAF53/Arp4 homolog Alp5 in fission yeast is required for histone H4 acetylation, kinetochore-spindle attachment, and gene silencing at centromere. Mol. Biol. Cell 16, 316–327 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lessard, J. et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55, 201–215 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, J.I. et al. Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56, 94–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Shen, X., Ranallo, R., Choi, E. & Wu, C. Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol. Cell 12, 147–155 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Downs, J.A. et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16, 979–990 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Shivaswamy, S. & Iyer, V.R. Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Mol. Cell. Biol. 28, 2221–2234 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martens, J.A. & Winston, F. Evidence that SWI/SNF directly represses transcription in S. cerevisiae. Genes Dev. 16, 2231–2236 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martens, J.A., Wu, P.Y. & Winston, F. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev. 19, 2695–2704 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Borneman, A.R. et al. Divergence of transcription factor binding sites across related yeast species. Science 317, 815–819 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Forsburg, S.L. & Rhind, N. Basic methods for fission yeast. Yeast 23, 173–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Bahler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Aves, S.J., Hindley, J., Phear, G.A. & Tongue, N. A fission yeast gene mapping close to suc1 encodes a protein containing two bromodomains. Mol. Gen. Genet. 248, 491–498 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Gould, K.L., Ren, L., Feoktistova, A.S., Jennings, J.L. & Link, A.J. Tandem affinity purification and identification of protein complex components. Methods 33, 239–244 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. MacCoss, M.J., Wu, C.C. & Yates, J.R. III. Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal. Chem. 74, 5593–5599 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Elias, J.E. & Gygi, S.P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Roberts, D.N., Stewart, A.J., Huff, J.T. & Cairns, B.R. The RNA polymerase III transcriptome revealed by genome-wide localization and activity-occupancy relationships. Proc. Natl. Acad. Sci. USA 100, 14695–14700 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mata, J., Lyne, R., Burns, G. & Bahler, J. The transcriptional program of meiosis and sporulation in fission yeast. Nat. Genet. 32, 143–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Lyne, R. et al. Whole-genome microarrays of fission yeast: characteristics, accuracy, reproducibility, and processing of array data. BMC Genomics 4, 27 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kippert, F. & Lloyd, D. The aniline blue fluorochrome specifically stains the septum of both live and fixed Schizosaccharomyces pombe cells. FEMS Microbiol. Lett. 132, 215–219 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Helmlinger and M. Gelbart for helpful comments on the manuscript. We are grateful to C. Hoffman (Biology Department, Boston College) and S. Labbé (Department of Biochemistry, University of Sherbrooke) for providing S. pombe strains. We also thank D. Drubin and P. Silver for assistance with the microscopy analysis and use of their facilities. This work was supported by the US National Institutes of Health grant GM32967 to F.W., HG3456 to S.P.G., and a Cancer Research UK grant C9546/A6517 to J.B. B.J.M. was supported by a Post-Doctoral Research Fellowship from the New Zealand Foundation of Research Science and Technology, and S.M. was supported by a fellowship for Advanced Researchers from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

B.J.M. designed and performed experiments. J.V. performed the MS analysis overseen by S.P.G. S.M. performed whole-genome microarray analysis overseen by J.B. F.W. assisted experimental design and supervised project. B.J.M. and F.W. wrote the manuscript.

Corresponding author

Correspondence to Fred Winston.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–6 (PDF 339 kb)

Excel File

Supplementary Table 7 (XLS 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monahan, B., Villén, J., Marguerat, S. et al. Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast. Nat Struct Mol Biol 15, 873–880 (2008). https://doi.org/10.1038/nsmb.1452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing