Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complexin and Ca2+ stimulate SNARE-mediated membrane fusion

Abstract

Ca2+-triggered, synchronized synaptic vesicle fusion underlies interneuronal communication. Complexin is a major binding partner of the SNARE complex, the core fusion machinery at the presynapse. The physiological data on complexin, however, have been at odds with each other, making delineation of its molecular function difficult. Here we report direct observation of two-faceted functions of complexin using the single-vesicle fluorescence fusion assay and EPR. We show that complexin I has two opposing effects on trans-SNARE assembly: inhibition of SNARE complex formation and stabilization of assembled SNARE complexes. Of note, SNARE-mediated fusion is markedly stimulated by complexin, and it is further accelerated by two orders of magnitude in response to an externally applied Ca2+ wave. We suggest that SNARE complexes, complexins and phospholipids collectively form a complex substrate for Ca2+ and Ca2+-sensing fusion effectors in neurotransmitter release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-vesicle FRET analysis of neuronal SNARE-induced membrane fusion.
Figure 2: Observation of dual functions of complexin I in the absence of Ca2+.
Figure 3: Complexin-assisted, Ca2+-triggered single-vesicle fusion events.
Figure 4: Molecular model of complexin function for Ca2+-triggered neurotransmitter release.

Similar content being viewed by others

References

  1. McMahon, H.T., Missler, M., Li, C. & Sudhof, T.C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 83, 111–119 (1995).

    Article  CAS  Google Scholar 

  2. Ishizuka, T., Saisu, H., Odani, S. & Abe, T. Synaphin: a protein associated with the docking/fusion complex in presynaptic terminals. Biochem. Biophys. Res. Commun. 213, 1107–1114 (1995).

    Article  CAS  Google Scholar 

  3. Reim, K. et al. Structurally and functionally unique complexins at retinal ribbon synapses. J. Cell Biol. 169, 669–680 (2005).

    Article  CAS  Google Scholar 

  4. Pabst, S. et al. Rapid and selective binding to the synaptic SNARE complex suggests a modulatory role of complexins in neuroexocytosis. J. Biol. Chem. 277, 7838–7848 (2002).

    Article  CAS  Google Scholar 

  5. Chen, X. et al. Three-dimensional structure of the complexin/SNARE complex. Neuron 33, 397–409 (2002).

    Article  CAS  Google Scholar 

  6. Rothman, J.E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  CAS  Google Scholar 

  7. Brunger, A.T. Structure and function of SNARE and SNARE-interacting proteins. Q. Rev. Biophys. 38, 1–47 (2005).

    Article  CAS  Google Scholar 

  8. Jackson, M.B. & Chapman, E.R. Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu. Rev. Biophys. Biomol. Struct. 35, 135–160 (2006).

    Article  CAS  Google Scholar 

  9. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  10. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  11. Poirier, M.A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5, 765–769 (1998).

    Article  CAS  Google Scholar 

  12. Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    Article  Google Scholar 

  13. Jahn, R. & Scheller, R.H. SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  Google Scholar 

  14. Archer, D.A., Graham, M.E. & Burgoyne, R.D. Complexin regulates the closure of the fusion pore during regulated vesicle exocytosis. J. Biol. Chem. 277, 18249–18252 (2002).

    Article  CAS  Google Scholar 

  15. Itakura, M., Misawa, H., Sekiguchi, M., Takahashi, S. & Takahashi, M. Transfection analysis of functional roles of complexin I and II in the exocytosis of two different types of secretory vesicles. Biochem. Biophys. Res. Commun. 265, 691–696 (1999).

    Article  CAS  Google Scholar 

  16. Tang, J. et al. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175–1187 (2006).

    Article  CAS  Google Scholar 

  17. Xue, M. et al. Distinct domains of complexin I differentially regulate neurotransmitter release. Nat. Struct. Mol. Biol. 14, 949–958 (2007).

    Article  CAS  Google Scholar 

  18. Reim, K. et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104, 71–81 (2001).

    Article  CAS  Google Scholar 

  19. Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K. & McNew, J.A. Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat. Struct. Mol. Biol. 13, 748–750 (2006).

    Article  CAS  Google Scholar 

  20. Giraudo, C.G., Eng, W.S., Melia, T.J. & Rothman, J.E. A clamping mechanism involved in SNARE-dependent exocytosis. Science 313, 676–680 (2006).

    Article  CAS  Google Scholar 

  21. Melia, T.J. Jr. Putting the clamps on membrane fusion: how complexin sets the stage for calcium-mediated exocytosis. FEBS Lett. 581, 2131–2139 (2007).

    Article  CAS  Google Scholar 

  22. Yoon, T.Y., Okumus, B., Zhang, F., Shin, Y.K. & Ha, T. Multiple intermediates in SNARE-induced membrane fusion. Proc. Natl. Acad. Sci. USA 103, 19731–19736 (2006).

    Article  CAS  Google Scholar 

  23. Xu, Y., Zhang, F., Su, Z., McNew, J.A. & Shin, Y.K. Hemifusion in SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 12, 417–422 (2005).

    Article  CAS  Google Scholar 

  24. Koh, T.W. & Bellen, H.J. Synaptotagmin I, a Ca2+ sensor for neurotransmitter release. Trends Neurosci. 26, 413–422 (2003).

    Article  CAS  Google Scholar 

  25. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  Google Scholar 

  26. Zampighi, G.A. et al. Conical electron tomography of a chemical synapse: vesicles docked to the active zone are hemi-fused. Biophys. J. 91, 2910–2918 (2006).

    Article  CAS  Google Scholar 

  27. Wong, J.L., Koppel, D.E., Cowan, A.E. & Wessel, G.M. Membrane hemifusion is a stable intermediate of exocytosis. Dev. Cell 12, 653–659 (2007).

    Article  CAS  Google Scholar 

  28. Thorgeirsson, T.E., Russell, C.J., King, D.S. & Shin, Y.K. Direct determination of the membrane affinities of individual amino acids. Biochemistry 35, 1803–1809 (1996).

    Article  CAS  Google Scholar 

  29. Huntwork, S. & Littleton, J.T. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat. Neurosci. 10, 1235–1237 (2007).

    Article  CAS  Google Scholar 

  30. Arac, D. et al. Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat. Struct. Mol. Biol. 13, 209–217 (2006).

    Article  CAS  Google Scholar 

  31. Sun, J. et al. A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450, 676–682 (2007).

    Article  CAS  Google Scholar 

  32. Saraswati, S., Adolfsen, B. & Littleton, J.T. Characterization of the role of the Synaptotagmin family as calcium sensors in facilitation and asynchronous neurotransmitter release. Proc. Natl. Acad. Sci. USA 104, 14122–14127 (2007).

    Article  CAS  Google Scholar 

  33. Rhee, J.S. et al. Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. Proc. Natl. Acad. Sci. USA 102, 18664–18669 (2005).

    Article  CAS  Google Scholar 

  34. Stein, A., Radhakrishnan, A., Riedel, D., Fasshauer, D. & Jahn, R. Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids. Nat. Struct. Mol. Biol. 14, 904–911 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Rizo (University of Texas Southwestern Medical Center) for kindly providing the plasmid for complexin I. T.-Y.Y. thanks C. Joo and J. Ryu for help with preparing illustrations and critical reading of the manuscript. This work was supported by US National Institutes of Health grants (R21 GM074526 to T.H. and GM051290-14 to Y.-K.S.).

Author information

Authors and Affiliations

Authors

Contributions

T.-Y.Y., T.H. and Y.-K.S. designed research. T.-Y.Y. and J.D. performed the single-vesicle measurements. X.L. performed protein purification and vesicle reconstitution. S.-M.L. and X.L. performed the EPR analysis. T.H. and Y.-K.S. provided project management and contributed to new reagents and analytic tools. T.-Y.Y., T.H. and Y.-K.S. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Taekjip Ha or Yeon-Kyun Shin.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 691 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, TY., Lu, X., Diao, J. et al. Complexin and Ca2+ stimulate SNARE-mediated membrane fusion. Nat Struct Mol Biol 15, 707–713 (2008). https://doi.org/10.1038/nsmb.1446

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1446

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing