Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT

Abstract

All chaperonins mediate ATP-dependent polypeptide folding by confining substrates within a central chamber. Intriguingly, the eukaryotic chaperonin TRiC (also called CCT) uses a built-in lid to close the chamber, whereas prokaryotic chaperonins use a detachable lid. Here we determine the mechanism of lid closure in TRiC using single-particle cryo-EM and comparative protein modeling. Comparison of TRiC in its open, nucleotide-free, and closed, nucleotide-induced states reveals that the interdomain motions leading to lid closure in TRiC are radically different from those of prokaryotic chaperonins, despite their overall structural similarity. We propose that domain movements in TRiC are coordinated through unique interdomain contacts within each subunit and, further, these contacts are absent in prokaryotic chaperonins. Our findings show how different mechanical switches can evolve from a common structural framework through modification of allosteric networks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryo-EM density maps of the eukaryotic chaperonin TRiC in its open and closed conformations.
Figure 2: Comparative protein structure modeling the closed state of TRiC.
Figure 3: Comparative protein structure modeling the open state of TRiC.
Figure 4: Comparison of the conformational changes of TRiC and GroEL subunits.
Figure 5: Apical-intermediate domain interfaces from crystallographic structures of the thermosome and GroEL.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Dobson, C.M. Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol. 15, 3–16 (2004).

    Article  CAS  Google Scholar 

  2. Gregersen, N., Bross, P., Jorgensen, M.M., Corydon, T.J. & Andresen, B.S. Defective folding and rapid degradation of mutant proteins is a common disease mechanism in genetic disorders. J. Inherit. Metab. Dis. 23, 441–447 (2000).

    Article  CAS  Google Scholar 

  3. Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647 (2001).

    Article  CAS  Google Scholar 

  4. Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  Google Scholar 

  5. Sigler, P.B. et al. Structure and function in GroEL-mediated protein folding. Annu. Rev. Biochem. 67, 581–608 (1998).

    Article  CAS  Google Scholar 

  6. Spiess, C., Meyer, A.S., Reissmann, S. & Frydman, J. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol. 14, 598–604 (2004).

    Article  CAS  Google Scholar 

  7. Frydman, J. et al. Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J. 11, 4767–4778 (1992).

    Article  CAS  Google Scholar 

  8. Kerner, M.J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli . Cell 122, 209–220 (2005).

    Article  CAS  Google Scholar 

  9. Tian, G., Vainberg, I.E., Tap, W.D., Lewis, S.A. & Cowan, N.J. Specificity in chaperonin-mediated protein folding. Nature 375, 250–253 (1995).

    Article  CAS  Google Scholar 

  10. Fenton, W.A. & Horwich, A.L. Chaperonin-mediated protein folding: fate of substrate polypeptide. Q. Rev. Biophys. 36, 229–256 (2003).

    Article  CAS  Google Scholar 

  11. Brinker, A. et al. Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107, 223–233 (2001).

    Article  CAS  Google Scholar 

  12. Bukau, B. & Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366 (1998).

    Article  CAS  Google Scholar 

  13. Saibil, H.R. & Ranson, N.A. The chaperonin folding machine. Trends Biochem. Sci. 27, 627–632 (2002).

    Article  CAS  Google Scholar 

  14. Valpuesta, J.M., Martin-Benito, J., Gomez-Puertas, P., Carrascosa, J.L. & Willison, K.R. Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT. FEBS Lett. 529, 11–16 (2002).

    Article  CAS  Google Scholar 

  15. Gutsche, I., Essen, L.O. & Baumeister, W. Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. J. Mol. Biol. 293, 295–312 (1999).

    Article  CAS  Google Scholar 

  16. Leroux, M.R. & Hartl, F.U. Protein folding: versatility of the cytosolic chaperonin TRiC/CCT. Curr. Biol. 10, R260–R264 (2000).

    Article  CAS  Google Scholar 

  17. Meyer, A.S. et al. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113, 369–381 (2003).

    Article  CAS  Google Scholar 

  18. Kafri, G., Willison, K.R. & Horovitz, A. Nested allosteric interactions in the cytoplasmic chaperonin containing TCP-1. Protein Sci. 10, 445–449 (2001).

    Article  CAS  Google Scholar 

  19. Reissmann, S., Parnot, C., Booth, C.R., Chiu, W. & Frydman, J. Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat. Struct. Mol. Biol. 14, 432–440 (2007).

    Article  CAS  Google Scholar 

  20. Yoshida, T. et al. Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin. J. Mol. Biol. 315, 73–85 (2002).

    Article  CAS  Google Scholar 

  21. Iizuka, R. et al. Role of the helical protrusion in the conformational change and molecular chaperone activity of the archaeal group II chaperonin. J. Biol. Chem. 279, 18834–18839 (2004).

    Article  CAS  Google Scholar 

  22. Rivenzon-Segal, D., Wolf, S.G., Shimon, L., Willison, K.R. & Horovitz, A. Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis. Nat. Struct. Mol. Biol. 12, 233–237 (2005).

    Article  CAS  Google Scholar 

  23. Boisvert, D.C., Wang, J., Otwinowski, Z., Horwich, A.L. & Sigler, P.B. The 2.4 crystal structure of the bacterial chaperonin GroEL complexed with ATPγS. Nat. Struct. Biol. 3, 170–177 (1996).

    Article  CAS  Google Scholar 

  24. Braig, K. et al. The crystal structure of the bacterial chaperonin GroEL at 2.8. Nature 371, 578–586 (1994).

    Article  CAS  Google Scholar 

  25. Ditzel, L. et al. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93, 125–138 (1998).

    Article  CAS  Google Scholar 

  26. Shomura, Y. et al. Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms. J. Mol. Biol. 335, 1265–1278 (2004).

    Article  CAS  Google Scholar 

  27. Llorca, O. et al. The 'sequential allosteric ring' mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin. EMBO J. 20, 4065–4075 (2001).

    Article  CAS  Google Scholar 

  28. Llorca, O. et al. Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations. EMBO J. 19, 5971–5979 (2000).

    Article  CAS  Google Scholar 

  29. Llorca, O. et al. Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Nature 402, 693–696 (1999).

    Article  CAS  Google Scholar 

  30. Xu, Z., Horwich, A.L. & Sigler, P.B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741–750 (1997).

    Article  CAS  Google Scholar 

  31. Kubota, H., Hynes, G., Carne, A., Ashworth, A. & Willison, K. Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin. Curr. Biol. 4, 89–99 (1994).

    Article  CAS  Google Scholar 

  32. Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  Google Scholar 

  33. Liou, A.K. & Willison, K.R. Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro-complexes. EMBO J. 16, 4311–4316 (1997).

    Article  CAS  Google Scholar 

  34. Saibil, H. Molecular chaperones: containers and surfaces for folding, stabilising or unfolding proteins. Curr. Opin. Struct. Biol. 10, 251–258 (2000).

    Article  CAS  Google Scholar 

  35. Young, J.C., Agashe, V.R., Siegers, K. & Hartl, F.U. Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol. 5, 781–791 (2004).

    Article  CAS  Google Scholar 

  36. Brooks, B. & Karplus, M. Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 80, 6571–6575 (1983).

    Article  CAS  Google Scholar 

  37. Chacon, P., Tama, F. & Wriggers, W. Mega-Dalton biomolecular motion captured from electron microscopy reconstructions. J. Mol. Biol. 326, 485–492 (2003).

    Article  CAS  Google Scholar 

  38. Go, N., Noguti, T. & Nishikawa, T. Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc. Natl. Acad. Sci. USA 80, 3696–3700 (1983).

    Article  CAS  Google Scholar 

  39. Hinsen, K. The molecular modeling toolkit: a new approach to molecular simulations. J. Comput. Chem. 21, 79–85 (2000).

    Article  CAS  Google Scholar 

  40. Ma, J. & Karplus, M. The allosteric mechanism of the chaperonin GroEL: a dynamic analysis. Proc. Natl. Acad. Sci. USA 95, 8502–8507 (1998).

    Article  CAS  Google Scholar 

  41. Tama, F. & Brooks, C.L., III. Diversity and identity of mechanical properties of icosahedral viral capsids studied with elastic network normal mode analysis. J. Mol. Biol. 345, 299–314 (2005).

    Article  CAS  Google Scholar 

  42. Heller, M. et al. NMR studies on the substrate-binding domains of the thermosome: structural plasticity in the protrusion region. J. Mol. Biol. 336, 717–729 (2004).

    Article  CAS  Google Scholar 

  43. Gomez-Puertas, P., Martin-Benito, J., Carrascosa, J.L., Willison, K.R. & Valpuesta, J.M. The substrate recognition mechanisms in chaperonins. J. Mol. Recognit. 17, 85–94 (2004).

    Article  CAS  Google Scholar 

  44. Pappenberger, G. et al. Crystal structure of the CCTγ apical domain: implications for substrate binding to the eukaryotic cytosolic chaperonin. J. Mol. Biol. 318, 1367–1379 (2002).

    Article  CAS  Google Scholar 

  45. Feldman, D.E., Spiess, C., Howard, D.E. & Frydman, J. Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding. Mol. Cell 12, 1213–1224 (2003).

    Article  CAS  Google Scholar 

  46. Kubota, S., Kubota, H. & Nagata, K. Cytosolic chaperonin protects folding intermediates of Gβ from aggregation by recognizing hydrophobic β-strands. Proc. Natl. Acad. Sci. USA 103, 8360–8365 (2006).

    Article  CAS  Google Scholar 

  47. Rommelaere, H., De Neve, M., Melki, R., Vandekerckhove, J. & Ampe, C. The cytosolic class II chaperonin CCT recognizes delineated hydrophobic sequences in its target proteins. Biochemistry 38, 3246–3257 (1999).

    Article  CAS  Google Scholar 

  48. Spiess, C., Miller, E.J., McClellan, A.J. & Frydman, J. Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins. Mol. Cell 24, 25–37 (2006).

    Article  CAS  Google Scholar 

  49. Ferreyra, R.G. & Frydman, J. Purification of the cytosolic chaperonin TRiC from bovine testis. Methods Mol. Biol. 140, 153–160 (2000).

    CAS  PubMed  Google Scholar 

  50. Booth, C.R. et al. A 9 Å single particle reconstruction from CCD captured images on a 200 kV electron cryomicroscope. J. Struct. Biol. 147, 116–127 (2004).

    Article  Google Scholar 

  51. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  Google Scholar 

  52. Brink, J. et al. Experimental verification of conformational variation of human fatty acid synthase as predicted by normal mode analysis. Structure 12, 185–191 (2004).

    Article  CAS  Google Scholar 

  53. Ludtke, S.J., Chen, D.H., Song, J.L., Chuang, D.T. & Chiu, W. Seeing GroEL at 6 Å resolution by single particle electron cryomicroscopy. Structure 12, 1129–1136 (2004).

    Article  CAS  Google Scholar 

  54. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  55. Eramian, D. et al. A composite score for predicting errors in protein structure models. Protein Sci. 15, 1653–1666 (2006).

    Article  CAS  Google Scholar 

  56. Topf, M., Baker, M.L., Marti-Renom, M.A., Chiu, W. & Sali, A. Refinement of protein structures by iterative comparative modeling and CryoEM density fitting. J. Mol. Biol. 357, 1655–1668 (2006).

    Article  CAS  Google Scholar 

  57. Jiang, W., Baker, M.L., Ludtke, S.J. & Chiu, W. Bridging the information gap: computational tools for intermediate resolution structure interpretation. J. Mol. Biol. 308, 1033–1044 (2001).

    Article  CAS  Google Scholar 

  58. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M.L. Baker for his discussions and assistance quantifying the similarity between cryo-EM reconstructions and high-resolution structures. This research was supported by the US National Institutes of Health (NIH), the NIH Roadmap Initiative for Medical Research, the US National Science Foundation and the Robert Welch Foundation.

Author information

Authors and Affiliations

Authors

Contributions

W.C. and J.F. designed and led the project; C.R.B. and A.S.M. carried out the protein preparations and cryo-EM measurements; C.R.B. and S.J.L. carried out the single-particle reconstruction and initial modeling; Y.C. carried out the normal mode analysis and refined the comparative models together with M.T. and A.S; C.R.B., A.S.M., W.C. and J.F. interpreted the data and wrote the manuscript; all authors made contributions to the final manuscript.

Corresponding authors

Correspondence to Wah Chiu or Judith Frydman.

Supplementary information

Supplementary Figures

Supplementary Figures 1–4 (PDF 11600 kb)

Supplementary Video 1

Monomer transition from open to closed conformation. (MPG 6585 kb)

Supplementary Video 2

Octamer transition from open to closed conformation. (MPG 25537 kb)

Supplementary Video 3

Top view of the lowest frequency non-degenerate mode (mode 1) from normal mode analysis (NMA). (MPG 4955 kb)

Supplementary Video 4

Side view of the lowest frequency non-degenerate mode (mode 1) from NMA. (MPG 5570 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booth, C., Meyer, A., Cong, Y. et al. Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT. Nat Struct Mol Biol 15, 746–753 (2008). https://doi.org/10.1038/nsmb.1436

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1436

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing