Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mouse Eri1 interacts with the ribosome and catalyzes 5.8S rRNA processing

Abstract

Eri1 is a 3′-to-5′ exoribonuclease conserved from fission yeast to humans. Here we show that Eri1 associates with ribosomes and ribosomal RNA (rRNA). Ribosomes from Eri1–deficient mice contain 5.8S rRNA that is aberrantly extended at its 3′ end, and Eri1, but not a catalytically inactive mutant, converts this abnormal 5.8S rRNA to the wild-type form in vitro and in cells. In human and murine cells, Eri1 localizes to the cytoplasm and nucleus, with enrichment in the nucleolus, the site of preribosome biogenesis. RNA binding residues in the Eri1 SAP and linker domains promote stable association with rRNA and thereby facilitate 5.8S rRNA 3′ end processing. Taken together, our findings indicate that Eri1 catalyzes the final trimming step in 5.8S rRNA processing, functionally and spatially connecting this regulator of RNAi with the basal translation machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reduced survival and weight of Eri1-deficient mice.
Figure 2: Eri1 associates with ribosomes.
Figure 3: Eri1 is required for 5.8S rRNA 3′ end processing.
Figure 4: Eri1 binds directly to rRNA and rRNA precursors, and Eri1 exonuclease activity is required for 5.8S rRNA 3′ end processing.
Figure 5: Eri1 catalyzes 3′ end processing of 5.8S rRNA.

Similar content being viewed by others

References

  1. Kennedy, S., Wang, D. & Ruvkun, G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427, 645–649 (2004).

    Article  CAS  Google Scholar 

  2. Buhler, M., Mohn, F., Stalder, L. & Muhlemann, O. Transcriptional silencing of nonsense codon-containing immunoglobulin minigenes. Mol. Cell 18, 307–317 (2005).

    Article  Google Scholar 

  3. Buhler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125, 873–886 (2006).

    Article  CAS  Google Scholar 

  4. Iida, T., Kawaguchi, R. & Nakayama, J. Conserved ribonuclease, Eri1, negatively regulates heterochromatin assembly in fission yeast. Curr. Biol. 16, 1459–1464 (2006).

    Article  CAS  Google Scholar 

  5. Cheng, Y. & Patel, D.J. Crystallographic structure of the nuclease domain of 3′hExo, a DEDDh family member, bound to rAMP. J. Mol. Biol. 343, 305–312 (2004).

    Article  CAS  Google Scholar 

  6. Dominski, Z., Yang, X.C., Kaygun, H., Dadlez, M. & Marzluff, W.F. A 3′ exonuclease that specifically interacts with the 3′ end of histone mRNA. Mol. Cell 12, 295–305 (2003).

    CAS  Google Scholar 

  7. Timmons, L. Endogenous inhibitors of RNA interference in Caenorhabditis elegans. Bioessays 26, 715–718 (2004).

    Article  CAS  Google Scholar 

  8. Duchaine, T.F. et al. Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell 124, 343–354 (2006).

    Article  CAS  Google Scholar 

  9. Lee, R.C., Hammell, C.M. & Ambros, V. Interacting endogenous and exogenous RNAi pathways in Caenorhabditis elegans. RNA 12, 589–597 (2006).

    Article  CAS  Google Scholar 

  10. Gabel, H.W. & Ruvkun, G. The exonuclease ERI-1 has a conserved dual role in 5.8S rRNA processing and RNAi. Nat. Struct. Mol. Biol. advance online publication, doi:10.1038/nsmb.1411 (27 April 2008).

  11. Yang, X.C., Purdy, M., Marzluff, W.F. & Dominski, Z. Characterization of 3′hExo, a 3′ exonuclease specifically interacting with the 3′ end of histone mRNA. J. Biol. Chem. 281, 30447–30454 (2006).

    Article  CAS  Google Scholar 

  12. Moore, P.B. & Steitz, T.A. The involvement of RNA in ribosome function. Nature 418, 229–235 (2002).

    Article  CAS  Google Scholar 

  13. Lecompte, O., Ripp, R., Thierry, J.C., Moras, D. & Poch, O. Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res. 30, 5382–5390 (2002).

    Article  CAS  Google Scholar 

  14. Cote, C.A., Greer, C.L. & Peculis, B.A. Dynamic conformational model for the role of ITS2 in pre-rRNA processing in yeast. RNA 8, 786–797 (2002).

    Article  CAS  Google Scholar 

  15. Joseph, N., Krauskopf, E., Vera, M.I. & Michot, B. Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast. Nucleic Acids Res. 27, 4533–4540 (1999).

    Article  CAS  Google Scholar 

  16. Yeh, L.C. & Lee, J.C. Structural analysis of the internal transcribed spacer 2 of the precursor ribosomal RNA from Saccharomyces cerevisiae. J. Mol. Biol. 211, 699–712 (1990).

    Article  CAS  Google Scholar 

  17. Chen, F.W. & Ioannou, Y.A. Ribosomal proteins in cell proliferation and apoptosis. Int. Rev. Immunol. 18, 429–448 (1999).

    Article  CAS  Google Scholar 

  18. Lambertsson, A. The minute genes in Drosophila and their molecular functions. Adv. Genet. 38, 69–134 (1998).

    Article  CAS  Google Scholar 

  19. Fukuda, T. et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat. Cell Biol. 9, 604–611 (2007).

    Article  CAS  Google Scholar 

  20. Oliver, E.R., Saunders, T.L., Tarle, S.A. & Glaser, T. Ribosomal protein L24 defect in belly spot and tail (Bst), a mouse Minute. Development 131, 3907–3920 (2004).

    Article  CAS  Google Scholar 

  21. Draptchinskaia, N. et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat. Genet. 21, 169–175 (1999).

    Article  CAS  Google Scholar 

  22. Fatica, A. & Tollervey, D. Making ribosomes. Curr. Opin. Cell Biol. 14, 313–318 (2002).

    Article  CAS  Google Scholar 

  23. Pillai, R.S. et al. Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309, 1573–1576 (2005).

    Article  CAS  Google Scholar 

  24. Thermann, R. & Hentze, M.W. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447, 875–878 (2007).

    Article  CAS  Google Scholar 

  25. Faber, A.W., Van Dijk, M., Raue, H.A. & Vos, J.C. Ngl2p is a Ccr4p-like RNA nuclease essential for the final step in 3′-end processing of 5.8S rRNA in Saccharomyces cerevisiae. RNA 8, 1095–1101 (2002).

    Article  CAS  Google Scholar 

  26. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′ → 5′ exoribonucleases. Cell 91, 457–466 (1997).

    Article  CAS  Google Scholar 

  27. Allmang, C. et al. The yeast exosome and human PM-Scl are related complexes of 3′ → 5′ exonucleases. Genes Dev. 13, 2148–2158 (1999).

    Article  CAS  Google Scholar 

  28. Briggs, M.W., Burkard, K.T. & Butler, J.S. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J. Biol. Chem. 273, 13255–13263 (1998).

    Article  CAS  Google Scholar 

  29. van Hoof, A., Lennertz, P. & Parker, R. Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast. EMBO J. 19, 1357–1365 (2000).

    Article  CAS  Google Scholar 

  30. Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).

    Article  CAS  Google Scholar 

  31. Gregory, R.I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  Google Scholar 

  32. Wu, H., Xu, H., Miraglia, L.J. & Crooke, S.T. Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J. Biol. Chem. 275, 36957–36965 (2000).

    Article  CAS  Google Scholar 

  33. Jalal, C., Uhlmann-Schiffler, H. & Stahl, H. Redundant role of DEAD box proteins p68 (Ddx5) and p72/p82 (Ddx17) in ribosome biogenesis and cell proliferation. Nucleic Acids Res. 35, 3590–3601 (2007).

    Article  CAS  Google Scholar 

  34. Lau, N.C., Lim, L.P., Weinstein, E.G. & Bartel, D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank W. Hammerschmidt, Helmholtz Center Munich, for the gift of the SV40 large T hygro retrovirus, D. Eick, Helmholtz Center Munich, for the gift of anti–PES-1 antibody and F. Alt, Immune Disease Institute, Boston, for recombinant Cre adenovirus. We thank J. Asara for assistance with MS and data analysis, E. Yanni and C. Gelinas for technical assistance and A. Whynot, T.A. Rapoport and P. Sorger for help and equipment for gradient fractionation. We also thank H. Gabel and G. Ruvkun for communicating unpublished data, the laboratories of D. Eick, M. Meisterernst and I. Jeremias for helpful discussion, and D. Eick and D. Moazed for comments on the manuscript. This work was supported by US National Institutes of Health (NIH) grants AI44432 and AI70788 to A.R., a Cancer Research Institute fellowship and Deutsche Forschungsgemeinschaft grant HE 3359/2 to V.H., and a Burroughs Wellcome Fund Career Award in the Biomedical Sciences to K.M.A. K.M.A. is a Special Fellow of The Leukemia and Lymphoma Society. W.A.P. is a National Defense Science and Engineering Graduate fellow. M.T. is supported by the Harvard Stem Cell Institute and is a Predoctoral Fellow of the Ryan Foundation.

Author information

Authors and Affiliations

Authors

Contributions

K.M.A. and V.H. initiated the project, planned and supervised the experiments, performed some experiments, and wrote the manuscript. A.R. provided advice and support and edited the manuscript. W.A.P., N.R. and A.D.L. established tools and assays and performed and analyzed experiments with technical assistance and advice from E.G., C.W., L.C.S., N.P., E.D.L., M.T., J.W.E. and Y.S. The monoclonal anti-Eri1 antibody was generated by E.K.

Corresponding authors

Correspondence to K Mark Ansel or Vigo Heissmeyer.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 5208 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansel, K., Pastor, W., Rath, N. et al. Mouse Eri1 interacts with the ribosome and catalyzes 5.8S rRNA processing. Nat Struct Mol Biol 15, 523–530 (2008). https://doi.org/10.1038/nsmb.1417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing