Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution

Abstract

During microRNA (miRNA) biogenesis, one strand of a 21–22-nucleotide RNA duplex is preferentially selected for entry into a silencing complex. The other strand, known as the miRNA* species, has typically been assumed to be a carrier strand. Here we show that, although Drosophila melanogaster miRNA* species are less abundant than their partners, they are often present at physiologically relevant levels and can associate with Argonaute proteins. Comparative genomic analyses revealed that >40% of miRNA* sequences resist nucleotide divergence across Drosophilid evolution, and at least half of these well-conserved miRNA* species select for conserved 3′ untranslated region seed matches well above background noise. Finally, we validated the inhibitory activity of miRNA* species in both cultured cells and transgenic animals. These data broaden the reach of the miRNA regulatory network and suggest an important mechanism that diversifies miRNA function during evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Both miRNA and miRNA* species can be detected in total RNA.
Figure 2: Highly conserved miRNA* species accumulate to higher relative levels at steady state.
Figure 3: miRNA and miRNA* species can be co-immunoprecipitated with AGO1.
Figure 4: Sensor assays in cultured cells and transgenic animals validate the regulatory activity of miRNA* species.
Figure 5: Bioinformatic evidence for the endogenous usage of both miRNAs and miRNA* species as regulatory RNAs.
Figure 6: Endogenous relevance of miRNA*-mediated repression.
Figure 7: The inherent dual-regulatory capability of miRNA hairpins may influence miRNA evolution.

Similar content being viewed by others

References

  1. Lai, E.C. MicroRNAs: runts of the genome assert themselves. Curr. Biol. 13, R925–R936 (2003).

    Article  CAS  Google Scholar 

  2. Bushati, N. & Cohen, S.M. MicroRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007).

    Article  CAS  Google Scholar 

  3. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  Google Scholar 

  4. Okamura, K., Hagen, J.W., Duan, H., Tyler, D.M. & Lai, E.C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89–100 (2007).

    Article  CAS  Google Scholar 

  5. Ruby, J.G., Jan, C.H. & Bartel, D.P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007).

    Article  CAS  Google Scholar 

  6. Berezikov, E., Chung, W.-J., Willis, J., Cuppen, E. & Lai, E.C. Mammalian mirtron genes. Mol. Cell 28, 328–336 (2007).

    Article  CAS  Google Scholar 

  7. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  CAS  Google Scholar 

  8. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).

    Article  CAS  Google Scholar 

  9. Ketting, R.F. et al. Dicer functions in RNA interference and in synthesis of small RNAs involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).

    Article  CAS  Google Scholar 

  10. Knight, S.W. & Bass, B.L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–2271 (2001).

    Article  CAS  Google Scholar 

  11. Lau, N.C., Lim, L., Weinstein, E. & Bartel, D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  Google Scholar 

  12. Lai, E.C., Tam, B. & Rubin, G.M. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev. 19, 1067–1080 (2005).

    Article  CAS  Google Scholar 

  13. Lai, E.C. MicroRNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364 (2002).

    Article  CAS  Google Scholar 

  14. Brennecke, J., Stark, A., Russell, R.B. & Cohen, S.M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005).

    Article  Google Scholar 

  15. Doench, J.G. & Sharp, P.A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).

    Article  CAS  Google Scholar 

  16. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  Google Scholar 

  17. Stark, A., Brennecke, J., Bushati, N., Russell, R.B. & Cohen, S.M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146 (2005).

    Article  CAS  Google Scholar 

  18. Grun, D., Wang, Y.L., Langenberger, D., Gunsalus, K.C. & Rajewsky, N. MicroRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comp. Biol. 1, e13 (2005).

    Article  Google Scholar 

  19. Farh, K.K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    Article  CAS  Google Scholar 

  20. Lai, E.C. Predicting and validating microRNA targets. Genome Biol. 5, 115 (2004).

    Article  Google Scholar 

  21. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  Google Scholar 

  22. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  Google Scholar 

  23. Kloosterman, W.P. et al. Cloning and expression of new microRNAs from zebrafish. Nucleic Acids Res. 34, 2558–2569 (2006).

    Article  CAS  Google Scholar 

  24. Ruby, J.G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193–1207 (2006).

    Article  CAS  Google Scholar 

  25. Ruby, J.G. et al. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res. 17, 1850–1864 (2007).

    Article  CAS  Google Scholar 

  26. Aravin, A.A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350 (2003).

    Article  CAS  Google Scholar 

  27. Forstemann, K., Horwich, M.D., Wee, L., Tomari, Y. & Zamore, P.D. Drosophila microRNAs are sorted into functionally distinct Argonaute complexes after production by Dicer-1. Cell 130, 287–297 (2007).

    Article  Google Scholar 

  28. Tomari, Y., Du, T. & Zamore, P.D. Sorting of Drosophila small silencing RNAs. Cell 130, 299–308 (2007).

    Article  CAS  Google Scholar 

  29. Silver, S.J., Hagen, J.W., Okamura, K., Perrimon, N. & Lai, E.C. Functional screening identifies miR-315 as a potent activator of Wingless signaling. Proc. Natl. Acad. Sci. USA 104, 18151–18156 (2007).

    Article  CAS  Google Scholar 

  30. Ronshaugen, M., Biemar, F., Piel, J., Levine, M. & Lai, E.C. The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings. Genes Dev. 19, 2947–2952 (2005).

    Article  CAS  Google Scholar 

  31. Bender, W. MicroRNAs in the Drosophila bithorax complex. Genes Dev. 22, 14–19 (2008).

    Article  CAS  Google Scholar 

  32. Stark, A. et al. A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. Genes Dev. 22, 8–13 (2008).

    Article  CAS  Google Scholar 

  33. Tyler, D.M. et al. Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci. Genes Dev. 22, 26–36 (2008).

    Article  CAS  Google Scholar 

  34. Stark, A., Brennecke, J., Russell, R.B. & Cohen, S.M. Identification of Drosophila microRNA targets. PLoS Biol. 1, e60 (2003).

    Article  Google Scholar 

  35. Jackson, A.L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).

    Article  CAS  Google Scholar 

  36. Lai, E.C., Tomancak, P., Williams, R.W. & Rubin, G.M. Computational identification of Drosophila microRNA genes. Genome Biol. 4, R42 (2003).

    Article  Google Scholar 

  37. Berezikov, E. et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 21–24 (2005).

    Article  CAS  Google Scholar 

  38. Gu, J., Fu, H., Zhang, X. & Li, Y. Identifications of conserved 7-mers in 3-UTRs and microRNAs in Drosophila. BMC Bioinformatics 8, 432 (2007).

    Article  Google Scholar 

  39. Hutvagner, G., Simard, M.J., Mello, C.C. & Zamore, P.D. Sequence-specific inhibition of small RNA function. PLoS Biol. 2, e98 (2004).

    Article  Google Scholar 

  40. Meister, G., Landthaler, M., Dorsett, Y. & Tuschl, T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10, 544–550 (2004).

    Article  CAS  Google Scholar 

  41. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  Google Scholar 

  42. Nielsen, C.B. et al. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13, 1894–1910 (2007).

    Article  CAS  Google Scholar 

  43. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  Google Scholar 

  44. Gaidatzis, D., van Nimwegen, E., Hausser, J. & Zavolan, M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8, 69 (2007).

    Article  Google Scholar 

  45. Majoros, W.H. & Ohler, U. Spatial preferences of microRNA targets in 3′ untranslated regions. BMC Genomics 8, 152 (2007).

    Article  Google Scholar 

  46. Cook, O., Biehs, B. & Bier, E. brinker and optomotor-blind act coordinately to initiate development of the L5 wing vein primordium in Drosophila. Development 131, 2113–2124 (2004).

    Article  CAS  Google Scholar 

  47. Stark, A. et al. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450, 219–232 (2007).

    Article  CAS  Google Scholar 

  48. Stark, A. et al. Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome Res. 17, 1865–1879 (2007).

    Article  CAS  Google Scholar 

  49. Lai, E.C., Wiel, C. & Rubin, G.M. Complementary miRNA pairs suggest a regulatory role for miRNA:miRNA duplexes. RNA 10, 171–175 (2004).

    Article  CAS  Google Scholar 

  50. Lai, E.C. & Rubin, G.M. neuralized functions cell-autonomously to regulate a subset of Notch-dependent processes during adult Drosophila development. Dev. Biol. 231, 217–233 (2001).

    Article  CAS  Google Scholar 

  51. Hu, S., Fambrough, D., Atashi, J.R., Goodman, C.S. & Crews, S.T. The Drosophila abrupt gene encodes a BTB-zinc finger regulatory protein that controls the specificity of neuromuscular connections. Genes Dev. 9, 2936–2948 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Tam (University of California, Davis) for helping to construct transgenic sensors. We thank J.G. Ruby and D. Bartel (Howard Hughes Medical Institute and Whitehead Institute) for sharing their initial analysis of Drosophila miRNAs; S. Crews (University of North Carolina) for the Abrupt antibody; the University of California, Santa Cruz genome center, Agencourt, and the Baylor College of Medicine for Drosophila genome sequences, assemblies and alignments; and J. Major (Sloan-Kettering Institute) for software and technical support. K.O. was supported by a grant from the Charles Revson Foundation. E.C.L. was supported by grants from the Leukemia and Lymphoma Society, the Burroughs Wellcome Foundation, the V Foundation for Cancer Research, the Sidney Kimmel Cancer Foundation and the US National Institutes of Health (GM083300).

Author information

Authors and Affiliations

Authors

Contributions

K.O. performed the northern blots, IP tests and luciferase sensor assays; M.D.P. performed the computational analysis; D.M.T. performed imaginal disc stainings; H.D. and Y.-t.C. prepared sensor constructs; E.C.L. wrote the manuscript.

Corresponding author

Correspondence to Eric C Lai.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Methods (PDF 7803 kb)

Supplementary Table 1

miRNA/miRNA* clone counts and ratios across Drosophila development. (XLS 125 kb)

Supplementary Table 2

Segregated clone data of 26 genes that generated at least 50 reads in all 4 embryonic time windows. (XLS 38 kb)

Supplementary Table 3

Target signal noise and P-values for the 65 highly conserved (HC) miRNA and miRNA* seeds. (XLS 24 kb)

Supplementary Table 4

Target signal noise and P-values for the 20 poorly conserved (PC) miRNA and miRNA* seeds. (XLS 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamura, K., Phillips, M., Tyler, D. et al. The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 15, 354–363 (2008). https://doi.org/10.1038/nsmb.1409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1409

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing