Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases

A Corrigendum to this article was published on 01 September 2008

This article has been updated

Abstract

Dicer initiates RNA interference by generating small RNAs involved in various silencing pathways. Dicer participates in centromeric silencing, but its role in the epigenetic regulation of other chromatin domains has not been explored. Here we show that Dicer1 deficiency in Mus musculus leads to decreased DNA methylation, concomitant with increased telomere recombination and telomere elongation. These DNA-methylation defects correlate with decreased expression of Dnmt1, Dnmt3a and Dnmt3b DNA methyltransferases (Dnmts), and methylation levels can be recovered by their overexpression. We identify the retinoblastoma-like 2 protein (Rbl2) as responsible for decreased Dnmt expression in Dicer1-null cells, suggesting the existence of Dicer-dependent small RNAs that target Rbl2. We identify the miR-290 cluster as being downregulated in Dicer1-deficient cells and show that it silences Rbl2, thereby controlling Dnmt expression. These results identify a pathway by which miR-290 directly regulates Rbl2-dependent Dnmt expression, indirectly affecting telomere-length homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defective DNA methylation in Dicer1-null cells.
Figure 2: Defective DNA methylation of Dicer1-null cells.
Figure 3: Increased telomere recombination and aberrantly elongated telomeres in Dicer1-null cells.
Figure 4: Decreased telomerase activity and normal expression of telomere-binding proteins in the absence of Dicer.
Figure 5: Dicer is not required to direct heterochromatic histone marks and HP1 binding at mammalian telomeres and subtelomeres.
Figure 6: Increased expression of Retinoblastoma (Rb) family proteins in Dicer1-null cells is responsible of the decreased expression of Dnmt1, Dnmt3a and Dnmt3b.
Figure 7: The miR-290 cluster targets Rbl2 and controls Dnmt3a,3b expression.
Figure 8: A previously unknown miR-290–dependent pathway controls DNA methylation via Rbl2 and affects telomere integrity and telomere-length homeostasis.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Change history

  • 18 June 2008

    In the version of this article initially published, the GEO accession number for the array data was not provided. It is GSE11229. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Fukagawa, T. et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat. Cell Biol. 6, 784–791 (2004).

    Article  CAS  Google Scholar 

  2. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).

    Article  CAS  Google Scholar 

  3. Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  Google Scholar 

  4. Hall, I.M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    Article  CAS  Google Scholar 

  5. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 (2004).

    Article  CAS  Google Scholar 

  6. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    Article  CAS  Google Scholar 

  7. Cobb, B.S. et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J. Exp. Med. 201, 1367–1373 (2005).

    Article  CAS  Google Scholar 

  8. Murchison, E.P. et al. Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl. Acad. Sci. USA 102, 12135–12140 (2005).

    Article  CAS  Google Scholar 

  9. Wang, F. et al. The assembly and maintenance of heterochromatin initiated by transgene repeats are independent of the RNA interference pathway in mammalian cells. Mol. Cell. Biol. 26, 4028–4040 (2006).

    Article  CAS  Google Scholar 

  10. Hall, I.M., Noma, K. & Grewal, S.I. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl. Acad. Sci. USA 100, 193–198 (2003).

    Article  CAS  Google Scholar 

  11. Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S.I. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl. Acad. Sci. USA 102, 152–157 (2005).

    Article  CAS  Google Scholar 

  12. Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).

    Article  CAS  Google Scholar 

  13. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

    Article  CAS  Google Scholar 

  14. Gonzalo, S. et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat. Cell Biol. 8, 416–424 (2006).

    Article  CAS  Google Scholar 

  15. Esteller, M. Relevance of DNA methylation in the management of cancer. Lancet Oncol. 4, 351–358 (2003).

    Article  CAS  Google Scholar 

  16. Dodge, J.E. et al. Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. J. Biol. Chem. 280, 17986–17991 (2005).

    Article  CAS  Google Scholar 

  17. Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 19, 219–220 (1998).

    Article  CAS  Google Scholar 

  18. Okano, M., Bell, D.W., Haber, D.A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  Google Scholar 

  19. Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  Google Scholar 

  20. Chen, T., Ueda, Y., Dodge, J.E., Wang, Z. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell. Biol. 23, 5594–5605 (2003).

    Article  CAS  Google Scholar 

  21. Chen, T., Tsujimoto, N. & Li, E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol. Cell. Biol. 24, 9048–9058 (2004).

    Article  CAS  Google Scholar 

  22. Garcia-Cao, M., O'Sullivan, R., Peters, A.H., Jenuwein, T. & Blasco, M.A. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat. Genet. 36, 94–99 (2004).

    Article  CAS  Google Scholar 

  23. García-Cao, M., Gonzalo, S., Dean, D. & Blasco, M.A. Role of the Rb family members in controlling telomere length. Nat. Genet. 32, 415–419 (2002).

    Article  Google Scholar 

  24. Gonzalo, S. et al. Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat. Cell Biol. 7, 420–428 (2005).

    Article  CAS  Google Scholar 

  25. Benetti, R., Garcia-Cao, M. & Blasco, M.A. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat. Genet. 39, 243–250 (2007).

    Article  CAS  Google Scholar 

  26. Benetti, R. et al. Suv4–20h deficiency results in telomere elongation and de-repression of telomere recombination. J. Cell Biol. 178, 925–936 (2007).

    Article  CAS  Google Scholar 

  27. Blackburn, E.H. Switching and signaling at the telomere. Cell 106, 661–673 (2001).

    Article  CAS  Google Scholar 

  28. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  Google Scholar 

  29. Muntoni, A. & Reddel, R.R. The first molecular details of ALT in human tumor cells. Hum. Mol. Genet. 14, R191–R196 (2005).

    Article  CAS  Google Scholar 

  30. Dunham, M.A., Neumann, A.A., Fasching, C.L. & Reddel, R.R. Telomere maintenance by recombination in human cells. Nat. Genet. 26, 447–450 (2000).

    Article  CAS  Google Scholar 

  31. Bailey, S.M., Brenneman, M.A. & Goodwin, E.H. Frequent recombination in telomeric DNA may extend the proliferative life of telomerase-negative cells. Nucleic Acids Res. 32, 3743–3751 (2004).

    Article  CAS  Google Scholar 

  32. Azzalin, C.M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801 (2007).

    Article  CAS  Google Scholar 

  33. Schoeftner, S. & Blasco, M.A. Developmentally regulated transcription of mammalian telomeres by DNA dependent RNA polymerase II. Nat Cell Biol. 10, 228–236 (2007).

    Article  Google Scholar 

  34. Houbaviy, H.B., Dennis, L., Jaenisch, R. & Sharp, P.A. Characterization of a highly variable eutherian microRNA gene. RNA 11, 1245–1257 (2005).

    Article  CAS  Google Scholar 

  35. Houbaviy, H.B., Murray, M.F. & Sharp, P.A. Embryonic stem cell-specific MicroRNAs. Dev. Cell 5, 351–358 (2003).

    Article  CAS  Google Scholar 

  36. Andl, T. et al. The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr. Biol. 16, 1041–1049 (2006).

    Article  CAS  Google Scholar 

  37. Reichenbach, P. et al. A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr. Biol. 13, 568–574 (2003).

    Article  CAS  Google Scholar 

  38. Zhou, X.Z. & Lu, K.P. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell 107, 347–359 (2001).

    Article  CAS  Google Scholar 

  39. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article  CAS  Google Scholar 

  40. Berezikov, E. et al. Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Res. 16, 1289–1298 (2006).

    Article  CAS  Google Scholar 

  41. Chano, T. et al. Identification of RB1CC1, a novel human gene that can induce RB1 in various human cells. Oncogene 21, 1295–1298 (2002).

    Article  CAS  Google Scholar 

  42. Skapek, S.X. et al. Cloning and characterization of a novel Kruppel-associated box family transcriptional repressor that interacts with the retinoblastoma gene product, RB. J. Biol. Chem. 275, 7212–7223 (2000).

    Article  CAS  Google Scholar 

  43. Lai, A. et al. RBP1 recruits the mSIN3-histone deacetylase complex to the pocket of retinoblastoma tumor suppressor family proteins found in limited discrete regions of the nucleus at growth arrest. Mol. Cell. Biol. 21, 2918–2932 (2001).

    Article  CAS  Google Scholar 

  44. McCabe, M.T., Low, J.A., Imperiale, M.J. & Day, M.L. Human polyomavirus BKV transcriptionally activates DNA methyltransferase 1 through the pRb/E2F pathway. Oncogene 25, 2727–2735 (2006).

    Article  CAS  Google Scholar 

  45. McCabe, M.T. et al. Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res. 66, 385–392 (2006).

    Article  CAS  Google Scholar 

  46. McCabe, M.T., Davis, J.N. & Day, M.L. Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer Res. 65, 3624–3632 (2005).

    Article  CAS  Google Scholar 

  47. Kimura, H., Nakamura, T., Ogawa, T., Tanaka, S. & Shiota, K. Transcription of mouse DNA methyltransferase 1 (Dnmt1) is regulated by both E2F-Rb-HDAC-dependent and -independent pathways. Nucleic Acids Res. 31, 3101–3113 (2003).

    Article  CAS  Google Scholar 

  48. Pradhan, S. & Kim, G.D. The retinoblastoma gene product interacts with maintenance human DNA (cytosine-5) methyltransferase and modulates its activity. EMBO J. 21, 779–788 (2002).

    Article  CAS  Google Scholar 

  49. Simin, K. et al. pRb inactivation in mammary cells reveals common mechanisms for tumor initiation and progression in divergent epithelia. PLoS Biol. 2, e22 (2004).

    Article  Google Scholar 

  50. Brehm, A. et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601 (1998).

    Article  CAS  Google Scholar 

  51. Shiota, K. & Yanagimachi, R. Epigenetics by DNA methylation for development of normal and cloned animals. Differentiation 69, 162–166 (2002).

    Article  CAS  Google Scholar 

  52. Ohgane, J., Hattori, N., Oda, M., Tanaka, S. & Shiota, K. Differentiation of trophoblast lineage is associated with DNA methylation and demethylation. Biochem. Biophys. Res. Commun. 290, 701–706 (2002).

    Article  CAS  Google Scholar 

  53. Liu, L. et al. Telomere lengthening early in development. Nat. Cell Biol. 9, 1436–1441 (2007).

    Article  CAS  Google Scholar 

  54. Samper, E., Goytisolo, F.A., Slijepcevic, P., van Buul, P.P. & Blasco, M.A. Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep. 1, 244–252 (2000).

    Article  CAS  Google Scholar 

  55. Zijlmans, J.M. et al. Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc. Natl. Acad. Sci. USA 94, 7423–7428 (1997).

    Article  CAS  Google Scholar 

  56. Muñoz, P., Blanco, R., Flores, J.M. & Blasco, M.A. XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat. Genet. 37, 1063–1071 (2005).

    Article  Google Scholar 

  57. Bailey, S.M. et al. Strand-specific postreplicative processing of mammalian telomeres. Science 293, 2462–2465 (2001).

    Article  CAS  Google Scholar 

  58. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 57, 289–300 (1995).

    Google Scholar 

  59. Goff, L.A. et al. Rational probe optimization and enhanced detection strategy. RNA Biol. 2, 93–100 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to O. Dominguez and D. Pisano from the Genomics and Bioinformatics Units of the Spanish National Cancer Centre (CNIO), respectively, for help with bisulfite sequencing analysis and various microarray and genome-sequence analyses. R.B. is a staff investigator of the CNIO, S.G. is a Fondo de Investigaciones Sanitarias (FIS) senior scientist. P.M. is a 'Ramon y Cajal' senior scientist. I.J. is a student of the Gulbenkian Ph.D. Program in Biomedicine, supported by FCT/MCT (Portugal). M.A.B.'s laboratory is funded by the MCyT (SAF2005-00277, GEN2001-4856-C13-08), by the Regional Government of Madrid (GR/SAL/0597/2004), European Union (TELOSENS FIGH-CT-2002-00217, INTACT LSHC-CT-2003-506803, ZINCAGE FOOD-CT-2003-506850, RISC-RAD FI6R-CT-2003-508842, MOL CANCER MED LSHC-CT-2004-502943) and the Josef Steiner Cancer Research Award, 2003.

Author information

Authors and Affiliations

Authors

Contributions

R.B. performed experiments shown in all manuscript figures as well as designed the experiments together with M.A.B. and S. Gonzalo. S. Gonzalo performed part of the experiments shown in Figure 3c,d and Figure 5. I.J. performed some of the experiments shown in Figure 3a,b. P.M. performed the experiments shown in Figure 3e,f. S. Gonzalez and M.S. generated the miRNA data shown in Figure 7a. S.S. contributed to initial characterization of Dicer1-null telomeric chromatin. E.M. and G.H. provided the Dicer1-null cells and helped with the writing of the manuscript. T.A. and S.M. provided the Dicer1-null skin samples. T.C. and E.L. provided the Dnmt-deficient cells and the Dnmt constructs. P.K. and M.A.B. prepared the manuscript figures. M.A.B., R.B. and S. Gonzalo wrote the paper.

Corresponding author

Correspondence to Maria A Blasco.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Methods (PDF 2447 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benetti, R., Gonzalo, S., Jaco, I. et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15, 268–279 (2008). https://doi.org/10.1038/nsmb.1399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1399

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing