Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2

Abstract

Ubiquitin-like proteins (UBLs) modify targets via related E1-E2-E3 cascades. How is UBL conjugation fidelity established? Here we report the basis for UBL selection by UBL conjugating enzyme 12 (Ubc12), which is specific for the neural precursor cell expressed, developmentally down-regulated protein 8 (NEDD8), and does not form a thioester-linked conjugate with ubiquitin. We systematically identified Ubc12 surfaces impeding Ubc12ubiquitin conjugate formation and found that several structurally dispersed E1 binding elements, rather than UBL-interacting surfaces, determine E2UBL specificity. In addition to roles for conserved E1 and E2 domains, unique structures contribute UBL specificity to the NEDD8 and ubiquitin pathways. By removing surface elements, without substituting corresponding sequences from ubiquitin E2s, we unmasked Ubc12's vestigial preference for ubiquitin over NEDD8 by 1010-fold. This has implications for the evolution of specific functions among ubiquitin E2s. We also find that Ubc12 sequences dictating UBL selection map to the E3 binding site, thus providing a molecular mechanism preventing inappropriate modification of targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Systematic identification of Ubc12 surfaces selecting against an incorrect Ubc12ubiquitin thioester conjugate.
Figure 2: Ubc12 surface elements select against forming an E2ubiquitin conjugate.
Figure 3: Mapping Ubc12's ubiquitin-like protein (UBL) selection determinants onto a crystal structure of a trapped complex with APPBP1-UBA3NEDD8(T)-NEDD8(A)-MgATP24.
Figure 4: Unmasking Ubc12's vestigial function as a ubiquitin-conjugating enzyme.
Figure 5: A key residue for forming a thioester conjugate with ubiquitin (Ub) conserved between Ubc12 and ubiquitin E2s.
Figure 6: Impaired Cul1 modification by Ubc12core-8ala_2.

Similar content being viewed by others

References

  1. Pickart, C.M. & Fushman, D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610–616 (2004).

    Article  CAS  Google Scholar 

  2. Hicke, L., Schubert, H.L. & Hill, C.P. Ubiquitin-binding domains. Nat. Rev. Mol. Cell Biol. 6, 610–621 (2005).

    Article  CAS  Google Scholar 

  3. Hurley, J.H., Lee, S. & Prag, G. Ubiquitin-binding domains. Biochem. J. 399, 361–372 (2006).

    Article  CAS  Google Scholar 

  4. Harper, J.W. & Schulman, B.A. Structural complexity in ubiquitin recognition. Cell 124, 1133–1136 (2006).

    Article  CAS  Google Scholar 

  5. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  Google Scholar 

  6. Dye, B.T. & Schulman, B.A. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu. Rev. Biophys. Biomol. Struct. 36, 131–150 (2007).

    Article  CAS  Google Scholar 

  7. Schwartz, D.C. & Hochstrasser, M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem. Sci. 28, 321–328 (2003).

    Article  CAS  Google Scholar 

  8. Pan, Z.Q., Kentsis, A., Dias, D.C., Yamoah, K. & Wu, K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene 23, 1985–1997 (2004).

    Article  CAS  Google Scholar 

  9. Osaka, F. et al. Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast. EMBO J. 19, 3475–3484 (2000).

    Article  CAS  Google Scholar 

  10. Tateishi, K., Omata, M., Tanaka, K. & Chiba, T. The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice. J. Cell Biol. 155, 571–579 (2001).

    Article  CAS  Google Scholar 

  11. Pickart, C.M. & Eddins, M.J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55–72 (2004).

    Article  CAS  Google Scholar 

  12. Bohnsack, R.N. & Haas, A.L. Conservation in the mechanism of Nedd8 activation by the human AppBp1-Uba3 heterodimer. J. Biol. Chem. 278, 26823–26830 (2003).

    Article  CAS  Google Scholar 

  13. Huang, D.T. et al. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Mol. Cell 17, 341–350 (2005).

    Article  CAS  Google Scholar 

  14. Eletr, Z.M., Huang, D.T., Duda, D.M., Schulman, B.A. & Kuhlman, B. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nat. Struct. Mol. Biol. 12, 933–934 (2005).

    Article  CAS  Google Scholar 

  15. Burroughs, A.M., Balaji, S., Iyer, L.M. & Aravind, L. Small but versatile: the extraordinary functional and structural diversity of the β-grasp fold. Biol. Direct 2, 18 (2007).

    Article  Google Scholar 

  16. Jin, J., Li, X., Gygi, S.P. & Harper, J.W. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447, 1135–1138 (2007).

    Article  CAS  Google Scholar 

  17. Pelzer, C. et al. UBE1L2, a novel E1 enzyme specific for ubiquitin. J. Biol. Chem. 282, 23010–23014 (2007).

    Article  CAS  Google Scholar 

  18. Chiu, Y.H., Sun, Q. & Chen, Z.J. E1–L2 activates both ubiquitin and FAT10. Mol. Cell 27, 1014–1023 (2007).

    Article  CAS  Google Scholar 

  19. Liakopoulos, D., Doenges, G., Matuschewski, K. & Jentsch, S. A novel protein modification pathway related to the ubiquitin system. EMBO J. 17, 2208–2214 (1998).

    Article  CAS  Google Scholar 

  20. Osaka, F. et al. A new NEDD8-ligating system for cullin-4A. Genes Dev. 12, 2263–2268 (1998).

    Article  CAS  Google Scholar 

  21. Gong, L. & Yeh, E.T. Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J. Biol. Chem. 274, 12036–12042 (1999).

    Article  CAS  Google Scholar 

  22. Millenium Pharmaceuticals, Inc. Inhibitors of E1 activating enzymes. United States Patent and Trademark Office no. 20070191293 (2007).

  23. Kumar, A. et al. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J. 26, 4457–4466 (2007).

    Article  CAS  Google Scholar 

  24. Huang, D.T. et al. Basis for a ubiquitin-like protein thioester switch toggling E1–E2 affinity. Nature 445, 394–398 (2007).

    Article  CAS  Google Scholar 

  25. Huang, D.T. et al. A unique E1–E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nat. Struct. Mol. Biol. 11, 927–935 (2004).

    Article  CAS  Google Scholar 

  26. Havranek, J.J. & Harbury, P.B. Automated design of specificity in molecular recognition. Nat. Struct. Biol. 10, 45–52 (2003).

    Article  CAS  Google Scholar 

  27. Bolon, D.N., Grant, R.A., Baker, T.A. & Sauer, R.T. Specificity versus stability in computational protein design. Proc. Natl. Acad. Sci. USA 102, 12724–12729 (2005).

    Article  CAS  Google Scholar 

  28. Cunningham, B.C. & Wells, J.A. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244, 1081–1085 (1989).

    Article  CAS  Google Scholar 

  29. Rape, M. & Kirschner, M.W. Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432, 588–595 (2004).

    Article  CAS  Google Scholar 

  30. Zheng, N., Wang, P., Jeffrey, P.D. & Pavletich, N.P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000).

    Article  CAS  Google Scholar 

  31. Zhang, M. et al. Chaperoned ubiquitylation—crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20, 525–538 (2005).

    Article  CAS  Google Scholar 

  32. Christensen, D.E., Brzovic, P.S. & Klevit, R.E. E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat. Struct. Mol. Biol. 14, 941–948 (2007).

    Article  CAS  Google Scholar 

  33. Walden, H., Podgorski, M.S. & Schulman, B.A. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature 422, 330–334 (2003).

    Article  CAS  Google Scholar 

  34. Lois, L.M. & Lima, C.D. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 24, 439–451 (2005).

    Article  CAS  Google Scholar 

  35. Szczepanowski, R.H., Filipek, R. & Bochtler, M. Crystal structure of a fragment of mouse ubiquitin-activating enzyme. J. Biol. Chem. 280, 22006–22011 (2005).

    Article  CAS  Google Scholar 

  36. Wang, J. et al. The intrinsic affinity between E2 and the Cys domain of E1 in ubiquitin-like modifications. Mol. Cell 27, 228–237 (2007).

    Article  Google Scholar 

  37. Hatakeyama, S., Jensen, J.P. & Weissman, A.M. Subcellular localization and ubiquitin-conjugating enzyme (E2) interactions of mammalian HECT family ubiquitin protein ligases. J. Biol. Chem. 272, 15085–15092 (1997).

    Article  CAS  Google Scholar 

  38. Anan, T. et al. Human ubiquitin-protein ligase Nedd4: expression, subcellular localization and selective interaction with ubiquitin-conjugating enzymes. Genes Cells 3, 751–763 (1998).

    Article  CAS  Google Scholar 

  39. Reverter, D. & Lima, C.D. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435, 687–692 (2005).

    Article  CAS  Google Scholar 

  40. Seol, J.H. et al. Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev. 13, 1614–1626 (1999).

    Article  CAS  Google Scholar 

  41. Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284, 657–661 (1999).

    Article  CAS  Google Scholar 

  42. Ohta, T., Michel, J.J., Schottelius, A.J. & Xiong, Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 3, 535–541 (1999).

    Article  CAS  Google Scholar 

  43. Morimoto, M., Nishida, T., Nagayama, Y. & Yasuda, H. Nedd8-modification of Cul1 is promoted by Roc1 as a Nedd8–E3 ligase and regulates its stability. Biochem. Biophys. Res. Commun. 301, 392–398 (2003).

    Article  CAS  Google Scholar 

  44. Xirodimas, D.P., Saville, M.K., Bourdon, J.C., Hay, R.T. & Lane, D.P. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118, 83–97 (2004).

    Article  CAS  Google Scholar 

  45. Rodrigo-Brenni, M.C. & Morgan, D.O. Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130, 127–139 (2007).

    Article  CAS  Google Scholar 

  46. Kirkpatrick, D.S. et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol. 8, 700–710 (2006).

    Article  CAS  Google Scholar 

  47. Madura, K., Dohmen, R.J. & Varshavsky, A. N-recognin/Ubc2 interactions in the N-end rule pathway. J. Biol. Chem. 268, 12046–12054 (1993).

    CAS  PubMed  Google Scholar 

  48. Zarrinpar, A., Park, S.H. & Lim, W.A. Optimization of specificity in a cellular protein interaction network by negative selection. Nature 426, 676–680 (2003).

    Article  CAS  Google Scholar 

  49. Jones, R.B., Gordus, A., Krall, J.A. & MacBeath, G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439, 168–174 (2006).

    Article  CAS  Google Scholar 

  50. Zheng, N. et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).

    Article  CAS  Google Scholar 

  51. Ciechanover, A., Elias, S., Heller, H. & Hershko, A. “Covalent affinity” purification of ubiquitin-activating enzyme. J. Biol. Chem. 257, 2537–2542 (1982).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Varshavsky (Caltech) for the construct for expressing Ubc2p, D. Duda, B. Dye, H. Kamadurai and D. Scott for helpful discussions and critical reading of the manuscript, D. Miller for laboratory support and S. Bozeman for administrative support. This work was supported in part by ALSAC (American Syrian Lebanese Associated Charities), a Beckman Young Investigator Award, a Pew Scholar Award and grants from the US National Institutes of Health (R01GM069530 and R01GM077053) to B.A.S. B.A.S. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

D.T.H. and B.A.S. designed and supervised the experiments. D.T.H., M.Z., and O.A. performed the experiments. D.T.H. and B.A.S. wrote the paper.

Corresponding author

Correspondence to Brenda A Schulman.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Methods (PDF 4103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, D., Zhuang, M., Ayrault, O. et al. Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2. Nat Struct Mol Biol 15, 280–287 (2008). https://doi.org/10.1038/nsmb.1387

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing