Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes

Abstract

Eukaryotic 20S proteasomes are composed of two α-rings and two β-rings, which form an αββα stacked structure. Here we describe a proteasome-specific chaperone complex, designated Dmp1–Dmp2, in budding yeast. Dmp1–Dmp2 directly bound to the α5 subunit to facilitate α-ring formation. In Δdmp1 cells, α-rings lacking α4 and decreased formation of 20S proteasomes were observed. Dmp1–Dmp2 interacted with proteasome precursors early during proteasome assembly and dissociated from the precursors before the formation of half-proteasomes. Notably, the crystallographic structures of Dmp1 and Dmp2 closely resemble that of PAC3—a mammalian proteasome-assembling chaperone; nonetheless, neither Dmp1 nor Dmp2 showed obvious sequence similarity to PAC3. The structure of the Dmp1–Dmp2–α5 complex reveals how this chaperone functions in proteasome assembly and why it dissociates from proteasome precursors before the β-rings are assembled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of Dmp1 and Dmp2.
Figure 2: Characterization of the Dmp1–Dmp2 complex.
Figure 3: Impaired 20S proteasome assembly in Δdmp1 cells.
Figure 4: Detection of abnormal α-rings lacking α4 in Δdmp1 and Δdmp2 cells.
Figure 5: Structure of the Dmp1–Dmp2 complex.
Figure 6: Structure of the Dmp1–Dmp2–α5 complex.
Figure 7: Structural similarity between Dmp1–Dmp2 and the human PAC3.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998).

    Article  CAS  Google Scholar 

  2. Coux, O., Tanaka, K. & Goldberg, A.L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847 (1996).

    Article  CAS  Google Scholar 

  3. Zwickl, P., Kleinz, J. & Baumeister, W. Critical elements in proteasome assembly. Nat. Struct. Biol. 1, 765–770 (1994).

    Article  CAS  Google Scholar 

  4. Chen, P. & Hochstrasser, M. Biogenesis, structure and function of the yeast 20S proteasome. EMBO J. 14, 2620–2630 (1995).

    Article  CAS  Google Scholar 

  5. Hirano, Y. et al. A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 437, 1381–1385 (2005).

    Article  CAS  Google Scholar 

  6. Nandi, D., Woodward, E., Ginsburg, D.B. & Monaco, J.J. Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor β subunits. EMBO J. 16, 5363–5375 (1997).

    Article  CAS  Google Scholar 

  7. Li, X., Kusmierczyk, A.R., Wong, P., Emili, A. & Hochstrasser, M. β-Subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint. EMBO J. 26, 2339–2349 (2007).

    Article  CAS  Google Scholar 

  8. Ramos, P.C., Hockendorff, J., Johnson, E.S., Varshavsky, A. & Dohmen, R.J. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 92, 489–499 (1998).

    Article  CAS  Google Scholar 

  9. Hirano, Y. et al. Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol. Cell 24, 977–984 (2006).

    Article  CAS  Google Scholar 

  10. Burri, L. et al. Identification and characterization of a mammalian protein interacting with 20S proteasome precursors. Proc. Natl. Acad. Sci. USA 97, 10348–10353 (2000).

    Article  CAS  Google Scholar 

  11. Heink, S., Ludwig, D., Kloetzel, P.M. & Kruger, E. IFN-γ-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc. Natl. Acad. Sci. USA 102, 9241–9246 (2005).

    Article  CAS  Google Scholar 

  12. Jayarapu, K. & Griffin, T.A. Protein-protein interactions among human 20S proteasome subunits and proteassemblin. Biochem. Biophys. Res. Commun. 314, 523–528 (2004).

    Article  CAS  Google Scholar 

  13. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  CAS  Google Scholar 

  14. Johnson, E.S., Ma, P.C., Ota, I.M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 (1995).

    Article  CAS  Google Scholar 

  15. Meimoun, A. et al. Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. Mol. Biol. Cell 11, 915–927 (2000).

    Article  CAS  Google Scholar 

  16. Mannhaupt, G., Schnall, R., Karpov, V., Vetter, I. & Feldmann, H. Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett. 450, 27–34 (1999).

    Article  CAS  Google Scholar 

  17. Xie, Y. & Varshavsky, A. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc. Natl. Acad. Sci. USA 98, 3056–3061 (2001).

    Article  CAS  Google Scholar 

  18. Glickman, M.H. et al. Functional analysis of the proteasome regulatory particle. Mol. Biol. Rep. 26, 21–28 (1999).

    Article  CAS  Google Scholar 

  19. Fehlker, M., Wendler, P., Lehmann, A. & Enenkel, C. Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep. 4, 959–963 (2003).

    Article  CAS  Google Scholar 

  20. Schmidt, M. et al. The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat. Struct. Mol. Biol. 12, 294–303 (2005).

    Article  CAS  Google Scholar 

  21. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997).

    Article  CAS  Google Scholar 

  22. Unno, M. et al. The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure 10, 609–618 (2002).

    Article  CAS  Google Scholar 

  23. Tallec, B. et al. 20S Proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol. Cell 27, 660–674 (2007).

    Article  Google Scholar 

  24. Tanaka, K. et al. Proteasomes (multi-protease complexes) as 20 S ring-shaped particles in a variety of eukaryotic cells. J. Biol. Chem. 263, 16209–16217 (1988).

    CAS  PubMed  Google Scholar 

  25. Takeuchi, J., Fujimuro, M., Yokosawa, H., Tanaka, K. & Toh-e, A. Rpn9 is required for efficient assembly of the yeast 26S proteasome. Mol. Cell. Biol. 19, 6575–6584 (1999).

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  27. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  Google Scholar 

  28. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr. 59, 2023–2030 (2003).

    Article  CAS  Google Scholar 

  29. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  30. Vagin, A.A. & Teplyakov, A. MOLREP: an automated Program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  31. Morris, R.J., Perrakis, A, & Lamzin, V.S. ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol. 374, 229–244 (2003).

    Article  CAS  Google Scholar 

  32. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  33. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  34. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  35. Merritt, E.A. & Murphy, M.E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  36. Potterton, E., McNicholas, S., Krissinel, E., Cowtan, K. & Noble, M. The CCP4 molecular-graphics project. Acta Crystallogr. D Biol. Crystallogr. 58, 1955–1957 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank all of the members of BL44XU, especially E. Yamashita and M. Yoshimura, for their help in data collection at SPring-8 and T. Hikage for his help in X-ray diffraction data collection for PAC3. This work was supported by grants from Japan Science and Technology Agency (to S.M.), the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (to H.Y., T.M., S.M., E.K., K.K. and K. Tanaka) and the Target Protein Project of MEXT (to T.M., K.K. and K. Tanaka and the Takeda Science Foundation (to K. Tanaka)). E.S. is a recipient of a Japan Society for the Promotion of Science Research Fellowship for Young Scientists.

Author information

Authors and Affiliations

Authors

Contributions

H.Y. and T. Kameyama performed all of the yeast experiments. T.M., H.Y., K. Takagi and T.Y. determined the structures of the Dmp1–Dmp2 and Dmp1–Dmp2 Δloop-α5 complexes. K.O., E.K., E.S., A.S., Y.H., S.M., T.Y. and K.K. determined the structure of PAC3. H.H., T. Kishimoto and S.N. conducted the mass spectrometric analysis. M.K. performed phylogenetic analyses. H.Y., T.M., K.K., M.K. and K. Tanaka wrote the paper. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Keiji Tanaka.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Tables 1 and 2 and Methods (PDF 1364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yashiroda, H., Mizushima, T., Okamoto, K. et al. Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat Struct Mol Biol 15, 228–236 (2008). https://doi.org/10.1038/nsmb.1386

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1386

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing