Crystal structure of the multifunctional Gβ5–RGS9 complex


Regulators of G-protein signaling (RGS) proteins enhance the intrinsic GTPase activity of G protein α (Gα) subunits and are vital for proper signaling kinetics downstream of G protein–coupled receptors (GPCRs). R7 subfamily RGS proteins specifically and obligately dimerize with the atypical G protein β5 (Gβ5) subunit through an internal G protein γ (Gγ)-subunit–like (GGL) domain. Here we present the 1.95-Å crystal structure of the Gβ5–RGS9 complex, which is essential for normal visual and neuronal signal transduction. This structure reveals a canonical RGS domain that is functionally integrated within a molecular complex that is poised for integration of multiple steps during G-protein activation and deactivation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure of Gβ5–RGS9.
Figure 2: RGS9 N-terminal lobe.
Figure 3: Conserved Gα binding interface on Gβ5.
Figure 4: Gγ-subunit–like (GGL) domains and Gγ subunits are structurally equivalent.
Figure 5: The RGS9-RGS domain interfaces with Gβ5 and activated Gα subunits.
Figure 6: Membrane orientation of the Gβ5–RGS9 complex.

Accession codes

Primary accessions

Protein Data Bank


  1. 1

    Gilman, A.G. Nobel Lecture. G proteins and regulation of adenylyl cyclase. Biosci. Rep. 15, 65–97 (1995).

  2. 2

    Berman, D.M. & Gilman, A.G. Mammalian RGS proteins: barbarians at the gate. J. Biol. Chem. 273, 1269–1272 (1998).

  3. 3

    De Vries, L., Zheng, B., Fischer, T., Elenko, E. & Farquhar, M.G. The regulator of G protein signaling family. Annu. Rev. Pharmacol. Toxicol. 40, 235–271 (2000).

  4. 4

    Ross, E.M. & Wilkie, T.M. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem. 69, 795–827 (2000).

  5. 5

    Gold, S.J., Ni, Y.G., Dohlman, H.G. & Nestler, E.J. Regulators of G-protein signaling (RGS) proteins: region-specific expression of nine subtypes in rat brain. J. Neurosci. 17, 8024–8037 (1997).

  6. 6

    Neubig, R.R. & Siderovski, D.P. Regulators of G-protein signalling as new central nervous system drug targets. Nat. Rev. Drug Discov. 1, 187–197 (2002).

  7. 7

    Krispel, C.M. et al. RGS expression rate-limits recovery of rod photoresponses. Neuron 51, 409–416 (2006).

  8. 8

    Zachariou, V. et al. Essential role for RGS9 in opiate action. Proc. Natl. Acad. Sci. USA 100, 13656–13661 (2003).

  9. 9

    Rahman, Z. et al. RGS9 modulates dopamine signaling in the basal ganglia. Neuron 38, 941–952 (2003).

  10. 10

    Kovoor, A. et al. D2 dopamine receptors colocalize regulator of G-protein signaling 9–2 (RGS9–2) via the RGS9 DEP domain, and RGS9 knock-out mice develop dyskinesias associated with dopamine pathways. J. Neurosci. 25, 2157–2165 (2005).

  11. 11

    Nishiguchi, K.M. et al. Defects in RGS9 or its anchor protein R9AP in patients with slow photoreceptor deactivation. Nature 427, 75–78 (2004).

  12. 12

    Lishko, P.V., Martemyanov, K.A., Hopp, J.A. & Arshavsky, V.Y. Specific binding of RGS9-Gβ5L to protein anchor in photoreceptor membranes greatly enhances its catalytic activity. J. Biol. Chem. 277, 24376–24381 (2002).

  13. 13

    Hu, G. & Wensel, T.G. R9AP, a membrane anchor for the photoreceptor GTPase accelerating protein, RGS9–1. Proc. Natl. Acad. Sci. USA 99, 9755–9760 (2002).

  14. 14

    Martemyanov, K.A., Yoo, P.J., Skiba, N.P. & Arshavsky, V.Y. R7BP, a Novel Neuronal protein interacting with RGS proteins of the R7 family. J. Biol. Chem. 280, 5133–5136 (2005).

  15. 15

    Sondek, J. & Siderovski, D.P. Gγ-like (GGL) domains: new frontiers in G-protein signaling and β-propeller scaffolding. Biochem. Pharmacol. 61, 1329–1337 (2001).

  16. 16

    Jones, M.B., Siderovski, D.P. & Hooks, S.B. The Gβγ dimer as a novel source of selectivity in G-protein signaling: GGL-ing at convention. Mol. Interv. 4, 200–214 (2004).

  17. 17

    Lambright, D.G. et al. The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379, 311–319 (1996).

  18. 18

    Wall, M.A., Posner, B.A. & Sprang, S.R. Structural basis of activity and subunit recognition in G protein heterotrimers. Structure 6, 1169–1183 (1998).

  19. 19

    Wong, H.C. et al. Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Nat. Struct. Biol. 7, 1178–1184 (2000).

  20. 20

    Anderson, G.R., Semenov, A., Song, J.H. & Martemyanov, K.A. The membrane anchor R7BP controls the proteolytic stability of the striatal specific RGS protein, RGS9–2. 282, 4772–4781. J. Biol. Chem. (2006).

  21. 21

    Patikoglou, G.A. & Koelle, M.R. An N-terminal region of Caenorhabditis elegans RGS proteins EGL-10 and EAT-16 directs inhibition of Gαo versus Gαq signaling. J. Biol. Chem. 277, 47004–47013 (2002).

  22. 22

    Martemyanov, K.A. et al. The DEP domain determines subcellular targeting of the GTPase activating protein RGS9 in vivo. J. Neurosci. 23, 10175–10181 (2003).

  23. 23

    Sondek, J., Bohm, A., Lambright, D.G., Hamm, H.E. & Sigler, P.B. Crystal structure of a GA protein βγ dimer at 2.1Å resolution. Nature 379, 369–374 (1996).

  24. 24

    Watson, A.J., Katz, A. & Simon, M.I. A fifth member of the mammalian G-protein β-subunit family. Expression in brain and activation of the β2 isotype of phospholipase C. J. Biol. Chem. 269, 22150–22156 (1994).

  25. 25

    Snow, B.E. et al. A G protein γ subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gβ5 subunits. Proc. Natl. Acad. Sci. USA 95, 13307–13312 (1998).

  26. 26

    Ford, C.E. et al. Molecular basis for interactions of G protein βγ subunits with effectors. Science 280, 1271–1274 (1998).

  27. 27

    Posner, B.A., Gilman, A.G. & Harris, B.A. Regulators of G protein signaling 6 and 7. Purification of complexes with Gβ5 and assessment of their effects on G protein-mediated signaling pathways. J. Biol. Chem. 274, 31087–31093 (1999).

  28. 28

    Snow, B.E., Betts, L., Mangion, J., Sondek, J. & Siderovski, D.P. Fidelity of G protein β-subunit association by the G protein γ-subunit-like domains of RGS6, RGS7, and RGS11. Proc. Natl. Acad. Sci. USA 96, 6489–6494 (1999).

  29. 29

    Dingus, J. et al. G Protein βγ dimer formation: Gβ and Gγ differentially determine efficiency of in vitro dimer formation. Biochemistry 44, 11882–11890 (2005).

  30. 30

    Slep, K.C. et al. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å. Nature 409, 1071–1077 (2001).

  31. 31

    Tesmer, J.J., Berman, D.M., Gilman, A.G. & Sprang, S.R. Structure of RGS4 bound to AlF4-activated Giα1: stabilization of the transition state for GTP hydrolysis. Cell 89, 251–261 (1997).

  32. 32

    Skiba, N.P. et al. RGS9-G β 5 substrate selectivity in photoreceptors. Opposing effects of constituent domains yield high affinity of RGS interaction with the G protein-effector complex. J. Biol. Chem. 276, 37365–37372 (2001).

  33. 33

    Chen, C.A. & Manning, D.R. Regulation of G proteins by covalent modification. Oncogene 20, 1643–1652 (2001).

  34. 34

    Hajdu-Cronin, Y.M., Chen, W.J., Patikoglou, G., Koelle, M.R. & Sternberg, P.W. Antagonism between Goα and Gqα in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for Goα signaling and regulates Gqα activity. Genes Dev. 13, 1780–1793 (1999).

  35. 35

    Robatzek, M., Niacaris, T., Steger, K., Avery, L. & Thomas, J.H. eat-11 encodes GPB-2, a Gβ5 ortholog that interacts with Goα and Gqα to regulate C. elegans behavior. Curr. Biol. 11, 288–293 (2001).

  36. 36

    Ballon, D.R. et al. DEP-domain-mediated regulation of GPCR signaling responses. Cell 126, 1079–1093 (2006).

  37. 37

    Hooks, S.B. et al. RGS6, RGS7, RGS9, and RGS11 stimulate GTPase activity of Gi family G-proteins with differential selectivity and maximal activity. J. Biol. Chem. 278, 10087–10093 (2003).

  38. 38

    Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

  39. 39

    Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D Biol. Crystallogr. 59, 1131–1137 (2003).

  40. 40

    Ten Eyck, L.F. Crystallographic fast Fourier transforms. Acta Crystallogr. A 29, 183–191 (1973).

  41. 41

    Cowtan, K.D. & Zhang, K.Y. Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol. 72, 245–270 (1999).

  42. 42

    McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

  43. 43

    Gaudet, R., Bohm, A. & Sigler, P.B. Crystal structure at 2.4 Å resolution of the complex of transducin βγ and its regulator, phosducin. Cell 87, 577–588 (1996).

  44. 44

    Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

  45. 45

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

  46. 46

    Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

  47. 47

    Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

  48. 48

    Lee, B. & Richards, F.M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).

  49. 49

    Potterton, L. et al. Developments in the CCP4 molecular-graphics project. Acta Crystallogr. D Biol. Crystallogr. 60, 2288–2294 (2004).

  50. 50

    Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

  51. 51

    Christopher, J.A. The Spock Homepage. <>(1998).

  52. 52

    Okada, T. et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J. Mol. Biol. 342, 571–583 (2004).

Download references


We thank L. Betts for suggestions in analyzing diffraction data. Data were collected at the Southeast Regional Collaborative Access Team (SER-CAT) 22-ID beamline at the Advanced Photon Source, Argonne National Laboratory. Supporting institutions may be found at We thank the SER-CAT beamline staff for assistance in data collection. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. This research was funded by grants from the US National Institutes of Health (P01-GM65533 and R01-GM081881 to J.S. and T.K.H.), the American Cancer Society (PF-06-034-01-GMC to M.L.C) and the University of North Carolina Lineberger Comprehensive Cancer Center (M.L.C.).

Author information

M.L.C., J.T.S., D.P.S., T.K.H. and J.S. conceived, performed and analyzed experiments, and co-wrote the manuscript. S.G. assisted with construct design.

Correspondence to John Sondek.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheever, M., Snyder, J., Gershburg, S. et al. Crystal structure of the multifunctional Gβ5–RGS9 complex. Nat Struct Mol Biol 15, 155–162 (2008).

Download citation

Further reading