Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insights into the dual activity of RNase J

Abstract

The maturation and stability of RNA transcripts is controlled by a combination of endo- and exoRNases. RNase J is unique, as it combines an RNase E–like endoribonucleolytic and a 5′-to-3′ exoribonucleolytic activity in a single polypeptide. The structural basis for this dual activity is unknown. Here we report the crystal structures of Thermus thermophilus RNase J and its complex with uridine 5′-monophosphate. A binding pocket coordinating the phosphate and base moieties of the nucleotide in the vicinity of the catalytic center provide a rationale for the 5′-monophosphate–dependent 5′-to-3′ exoribonucleolytic activity. We show that this dependence is strict; an initial 5′-PPP transcript cannot be degraded exonucleolytically from the 5′-end. Our results suggest that RNase J might switch promptly from endo- to exonucleolytic mode on the same RNA, a property that has important implications for RNA metabolism in numerous prokaryotic organisms and plant organelles containing RNase J orthologs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of RNase J and close up of the active site.
Figure 2: Comparison of the structures of T. thermophilus RNase J and E. coli RNase E (catalytic N-terminal domain).
Figure 3: In vitro activity of B. subtilis RNase J1 mutants and inhibition of the exonuclease activity by a 5′-PPP moiety.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Dreyfus, M. & Joyce, S. The interplay between translation and mRNA decay in procaryotes. in Translational Mechanisms (eds. Lapointe, J. & Brakier-Gingras, L.) 165–183 (Landes Bioscience, Georgetown, Texas, 2002).

    Google Scholar 

  2. Condon, C. RNA processing and degradation in Bacillus subtilis. Microbiol. Mol. Biol. Rev. 67, 157–174 (2003).

    Article  CAS  Google Scholar 

  3. Condon, C. & Putzer, H. The phylogenetic distribution of bacterial ribonucleases. Nucleic Acids Res. 30, 5339–5346 (2002).

    Article  CAS  Google Scholar 

  4. Agaisse, H. & Lereclus, D. STAB-SD: a Shine-Dalgarno sequence in the 5′ untranslated region is a determinant of mRNA stability. Mol. Microbiol. 20, 633–643 (1996).

    Article  CAS  Google Scholar 

  5. Bechhofer, D.H. & Dubnau, D. Induced mRNA stability in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 84, 498–502 (1987).

    Article  CAS  Google Scholar 

  6. Hambraeus, G., Karhumaa, K. & Rutberg, B. A 5′ stem-loop and ribosome binding site but not translation are important for the stability of Bacillus subtilis aprE leader mRNA. Microbiology 148, 1795–1803 (2002).

    Article  CAS  Google Scholar 

  7. Glatz, E., Nilsson, R.-P., Rutberg, L. & Rutberg, B. A dual role for the Bacillus subtilis leader and the GlpP protein in the regulated expression of glpD: antitermination and control of mRNA stability. Mol. Microbiol. 19, 319–328 (1996).

    Article  CAS  Google Scholar 

  8. Even, S. et al. Ribonucleases J1 and J2: two novel endoribonucleases in B. subtilis with functional homology to E. coli RNase E. Nucleic Acids Res. 33, 2141–2152 (2005).

    Article  CAS  Google Scholar 

  9. Mathy, N. et al. 5′-to-3′ Exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5′ stability of mRNA. Cell 129, 681–692 (2007).

    Article  CAS  Google Scholar 

  10. Condon, C., Putzer, H., Luo, D. & Grunberg-Manago, M. Processing of the Bacillus subtilis thrS leader mRNA is RNase E-dependent in Escherichia coli. J. Mol. Biol. 268, 235–242 (1997).

    Article  CAS  Google Scholar 

  11. Bouvet, P. & Belasco, J.G. Control of RNase E–mediated RNA degradation by 5′-terminal base pairing in E. coli. Nature 360, 488–491 (1992).

    Article  CAS  Google Scholar 

  12. Tock, M.R., Walsh, A.P., Carroll, G. & McDowall, K.J. The CafA protein required for the 5′-maturation of 16 S rRNA is a 5′- end–dependent ribonuclease that has context-dependent broad sequence specificity. J. Biol. Chem. 275, 8726–8732 (2000).

    Article  CAS  Google Scholar 

  13. Mackie, G.A. Ribonuclease E is a 5′-end–dependent endonuclease. Nature 395, 720–723 (1998).

    Article  CAS  Google Scholar 

  14. Jiang, X. & Belasco, J.G. Catalytic activation of multimeric RNase E and RNase G by 5′-monophosphorylated RNA. Proc. Natl. Acad. Sci. USA 101, 9211–9216 (2004).

    Article  CAS  Google Scholar 

  15. Callebaut, I., Moshous, D., Mornon, J.P. & de Villartay, J.P. Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res. 30, 3592–3601 (2002).

    Article  CAS  Google Scholar 

  16. Mandel, C.R. et al. Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 444, 953–956 (2006).

    Article  CAS  Google Scholar 

  17. Ishikawa, H., Nakagawa, N., Kuramitsu, S. & Masui, R. Crystal structure of TTHA0252 from Thermus thermophilus HB8, a RNA degradation protein of the metallo-beta-lactamase superfamily. J. Biochem. 140, 535–542 (2006).

    Article  CAS  Google Scholar 

  18. Dominski, Z. Nucleases of the metallo-beta-lactamase family and their role in DNA and RNA metabolism. Crit. Rev. Biochem. Mol. Biol. 42, 67–93 (2007).

    Article  CAS  Google Scholar 

  19. Li de la Sierra-Gallay, I., Mathy, N., Pellegrini, O. & Condon, C. Structure of the ubiquitous 3′ processing enzyme RNase Z bound to transfer RNA. Nat. Struct. Mol. Biol. 13, 376–377 (2006).

    Article  Google Scholar 

  20. de la Sierra-Gallay, I.L., Pellegrini, O. & Condon, C. Structural basis for substrate binding, cleavage and allostery in the tRNA maturase RNase Z. Nature 433, 657–661 (2005).

    Article  CAS  Google Scholar 

  21. Weaver, L.H. et al. Comparison of goose-type, chicken-type, and phage-type lysozymes illustrates the changes that occur in both amino acid sequence and three-dimensional structure during evolution. J. Mol. Evol. 21, 97–111 (1984).

    Article  Google Scholar 

  22. Cormack, R.S. & Mackie, G.A. Structural requirements for the processing of Escherichia coli 5 S ribosomal RNA by RNase E in vitro. J. Mol. Biol. 228, 1078–1090 (1992).

    Article  CAS  Google Scholar 

  23. Mackie, G.A. Secondary structure of the mRNA for ribosomal protein S20. Implications for cleavage by ribonuclease E. J. Biol. Chem. 267, 1054–1061 (1992).

    CAS  PubMed  Google Scholar 

  24. Mackie, G.A. & Genereaux, J.L. The role of RNA structure in determining RNase E–dependent cleavage sites in the mRNA for ribosomal protein S20 in vitro. J. Mol. Biol. 234, 998–1012 (1993).

    Article  CAS  Google Scholar 

  25. McDowall, K.J., Kaberdin, V.R., Wu, S.W., Cohen, S.N. & Lin-Chao, S. Site-specific RNase E cleavage of oligonucleotides and inhibition by stem-loops. Nature 374, 287–290 (1995).

    Article  CAS  Google Scholar 

  26. Callaghan, A.J. et al. Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover. Nature 437, 1187–1191 (2005).

    Article  CAS  Google Scholar 

  27. Choonee, N., Even, S., Zig, L. & Putzer, H. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism. Nucleic Acids Res. 35, 1578–1588 (2007).

    Article  CAS  Google Scholar 

  28. Ryan, K., Calvo, O. & Manley, J.L. Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease. RNA 10, 565–573 (2004).

    Article  CAS  Google Scholar 

  29. Moshous, D. et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105, 177–186 (2001).

    Article  CAS  Google Scholar 

  30. Ma, Y., Pannicke, U., Schwarz, K. & Lieber, M.R. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108, 781–794 (2002).

    Article  CAS  Google Scholar 

  31. Dominski, Z., Yang, X.C., Purdy, M., Wagner, E.J. & Marzluff, W.F.A. CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100. Mol. Cell. Biol. 25, 1489–1500 (2005).

    Article  CAS  Google Scholar 

  32. Ma, Y. et al. The DNA-dependent protein kinase catalytic subunit phosphorylation sites in human Artemis. J. Biol. Chem. 280, 33839–33846 (2005).

    Article  CAS  Google Scholar 

  33. Soubeyrand, S. et al. Artemis phosphorylated by DNA-dependent protein kinase associates preferentially with discrete regions of chromatin. J. Mol. Biol. 358, 1200–1211 (2006).

    Article  CAS  Google Scholar 

  34. Niewolik, D. et al. DNA-PKcs dependence of Artemis endonucleolytic activity, differences between hairpins and 5′ or 3′ overhangs. J. Biol. Chem. 281, 33900–33909 (2006).

    Article  CAS  Google Scholar 

  35. Taghbalout, A. & Rothfield, L. RNaseE and the other constituents of the RNA degradosome are components of the bacterial cytoskeleton. Proc. Natl. Acad. Sci. USA 104, 1667–1672 (2007).

    Article  CAS  Google Scholar 

  36. Vanzo, N.F. et al. Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Dev. 12, 2770–2781 (1998).

    Article  CAS  Google Scholar 

  37. Celesnik, H., Deana, A. & Belasco, J.G. Initiation of RNA decay in Escherichia coli by 5′ pyrophosphate removal. Mol. Cell 27, 79–90 (2007).

    Article  CAS  Google Scholar 

  38. Muhlrad, D., Decker, C.J. & Parker, R. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′ → 3′ digestion of the transcript. Genes Dev. 8, 855–866 (1994).

    Article  CAS  Google Scholar 

  39. Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 33, 491–497 (1968).

    Article  CAS  Google Scholar 

  40. Collaborative Computational Project, Number 4. The CCP 4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  41. Kabsch, W.J. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  42. Uson, I. & Sheldrick, G.M. Advances in direct methods for protein crystallography. Curr. Opin. Struct. Biol. 9, 643–648 (1999).

    Article  CAS  Google Scholar 

  43. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  Google Scholar 

  44. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  45. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  46. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  47. Vagin, A.A. et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2184–2195 (2004).

    Article  Google Scholar 

  48. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  49. DeLano, W.L. The PyMOL Molecular Graphics System. (DeLano Scientific, Palo Alto, California, 2002).

  50. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  Google Scholar 

  51. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Plumbridge, M. Dreyfus, C. Condon and D. Picot for discussions, and Véronique Norman for help with the crystallization assays. We acknowledge the European Synchrotron Radiation Facility for providing the synchrotron radiation facilities and would like to thank X. Thibault for assistance in using beamline ID14-4, D. Picot and L. Barucq for the collection of the RNase J–UMP data at beamline ID29, J.L. Popot for the use of crystallography facilities and X-ray generator at the Institut de Biologie Physico-Chimique, and V. Urlacher and J. Berenguer for their gift of T. thermophilus chromosomal DNA. This work was supported by the Université Paris 7-Denis Diderot, the CNRS (UPR9073), the Agence Nationale de la Recherche and the Conseil Régionale de l'Ile de France. A.J. was supported by a scholarship from the Iranian Ministry of Science.

Author information

Authors and Affiliations

Authors

Contributions

Protein samples for structural studies were prepared by L.Z. Functional experiments and cloning were carried out by A.J. and L.Z., and analyzed by H.P. and A.J. Crystallization, structure calculation and refinement were carried out by I.L.d.l.S.-G. The manuscript was written by H.P. and I.L.d.l.S.-G.

Corresponding author

Correspondence to Harald Putzer.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Table 1 (PDF 2887 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Sierra-Gallay, I., Zig, L., Jamalli, A. et al. Structural insights into the dual activity of RNase J. Nat Struct Mol Biol 15, 206–212 (2008). https://doi.org/10.1038/nsmb.1376

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing