Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superwobbling facilitates translation with reduced tRNA sets

Abstract

Some bacterial and most organelle genomes do not encode the full set of 32 tRNA species required to read all codons according to Crick's wobble rules. 'Superwobble', in which a tRNA species with an unmodified U in the wobble position reads all four nucleotides in the third codon position, represents one possible mechanism for how a reduced tRNA set could still suffice. We have tested the superwobble hypothesis by producing knockout mutants for the pair of plastid glycine tRNA genes. Here we show that, whereas the tRNA gene with U in the wobble position is essential, the gene with G in this position is nonessential, demonstrating that the U-containing anticodon can indeed read all four glycine triplets. We also show that the price for superwobbling is a reduced translational efficiency, which explains why most organisms prefer pairs of isoaccepting tRNAs over the superwobbling mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction of transformation vectors for disruption of the two plastid tRNAGly genes.
Figure 2: Mutant phenotypes of plastid transformants generated with the knockout constructs for the two glycine tRNAs.
Figure 3: Seed assays to confirm heteroplasmy of ΔtrnG-UCC plants and homoplasmy of ΔtrnG-GCC plants.
Figure 4: Analysis of plastid gene expression in tRNAGly mutants.
Figure 5: Absence of tRNA import into chloroplasts of the ΔtrnG-GCC mutant.

Similar content being viewed by others

References

  1. Crick, F.H.C. Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548–555 (1966).

    Article  CAS  Google Scholar 

  2. Osawa, S., Jukes, T.H., Watanabe, K. & Muto, A. Recent evidence for evolution of the genetic code. Microbiol. Rev. 56, 229–264 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lung, B. et al. Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucleic Acids Res. 34, 3842–3852 (2006).

    Article  CAS  Google Scholar 

  4. Bonitz, S.G. et al. Codon recognition rules in yeast mitochondria. Proc. Natl. Acad. Sci. USA 77, 3167–3170 (1980).

    Article  CAS  Google Scholar 

  5. Kurland, C.G. Evolution of mitochondrial genomes and the genetic code. Bioessays 14, 709–714 (1992).

    Article  CAS  Google Scholar 

  6. Näsvall, S.J., Chen, P. & Björk, G.R. The modified wobble nucleoside uridine-5-oxyacetic acid in tRNAProcmo UGG promotes reading of all four proline codons in vivo. RNA 10, 1662–1673 (2004).

    Article  Google Scholar 

  7. Weixlbaumer, A. et al. Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nat. Struct. Mol. Biol. 14, 498–502 (2007).

    Article  CAS  Google Scholar 

  8. Francis, M.A., Suh, E.R. & Dudock, B.S. The nucleotide sequence and characterization of four chloroplast tRNAs from the alga Codium fragile. J. Biol. Chem. 264, 17243–17249 (1989).

    CAS  PubMed  Google Scholar 

  9. Ambrogelly, A., Palioura, S. & Söll, D. Natural expansion of the genetic code. Nat. Chem. Biol. 3, 29–35 (2007).

    Article  CAS  Google Scholar 

  10. Vernon, D., Gutell, R.R., Cannone, J.J., Rumpf, R.W. & Birky, C.W. Jr. Accelerated evolution of functional plastid rRNA and elongation factor genes due to reduced protein synthetic load after the loss of photosynthesis in the chlorophyte alga Polytoma. Mol. Biol. Evol. 18, 1810–1822 (2001).

    Article  CAS  Google Scholar 

  11. Lagerkvist, U. “Two out of three”: an alternative method for codon reading. Proc. Natl. Acad. Sci. USA 75, 1759–1762 (1978).

    Article  CAS  Google Scholar 

  12. Samuelsson, T., Axberg, T., Borén, T. & Lagerkvist, U. Unconventional reading of the glycine codons. J. Biol. Chem. 258, 13178–13184 (1983).

    CAS  PubMed  Google Scholar 

  13. Svab, Z. & Maliga, P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90, 913–917 (1993).

    Article  CAS  Google Scholar 

  14. Drescher, A., Ruf, S., Calsa, T. Jr., Carrer, H. & Bock, R. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J. 22, 97–104 (2000).

    Article  CAS  Google Scholar 

  15. Shikanai, T. et al. The chloroplast cplP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol. 42, 264–273 (2001).

    Article  CAS  Google Scholar 

  16. Rogalski, M., Ruf, S. & Bock, R. Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res. 34, 4537–4545 (2006).

    Article  CAS  Google Scholar 

  17. Kanevski, I. & Maliga, P. Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc. Natl. Acad. Sci. USA 91, 1969–1973 (1994).

    Article  CAS  Google Scholar 

  18. Ruf, S., Kössel, H. & Bock, R. Targeted inactivation of a tobacco intron-containing open reading frame reveals a novel chloroplast-encoded photosystem I-related gene. J. Cell Biol. 139, 95–102 (1997).

    Article  CAS  Google Scholar 

  19. Hager, M., Biehler, K., Illerhaus, J., Ruf, S. & Bock, R. Targeted inactivation of the smallest plastid genome-encoded open reading frame reveals a novel and essential subunit of the cytochrome b6f complex. EMBO J. 18, 5834–5842 (1999).

    Article  CAS  Google Scholar 

  20. Leister, D. Origin, evolution and genetic effects of nuclear insertions of organelle DNA. Trends Genet. 21, 655–663 (2005).

    Article  CAS  Google Scholar 

  21. Ruf, S., Biehler, K. & Bock, R. A small chloroplast-encoded protein as a novel architectural component of the light-harvesting antenna. J. Cell Biol. 149, 369–377 (2000).

    Article  CAS  Google Scholar 

  22. Ahlert, D., Ruf, S. & Bock, R. Plastid protein synthesis is required for plant development in tobacco. Proc. Natl. Acad. Sci. USA 100, 15730–15735 (2003).

    Article  CAS  Google Scholar 

  23. Taylor, G.W., Wolfe, K.H., Morden, K.W., dePamphilis, C.W. & Palmer, J.D. Lack of a functional plastid tRNACys gene is associated with loss of photosynthesis in a lineage of parasitic plants. Curr. Genet. 20, 515–518 (1991).

    Article  CAS  Google Scholar 

  24. Murphy, F.V. IV & Ramakrishnan, V. Structure of a purine-purine wobble base pair in the decoding center of the ribosome. Nat. Struct. Mol. Biol. 11, 1251–1252 (2004).

    Article  CAS  Google Scholar 

  25. Manuell, A.L., Quispe, J. & Mayfield, S.P. Structure of the chloroplast ribosome: novel domains for translation regulation. PLoS Biol. 5, 1785–1797 (2007).

    Article  CAS  Google Scholar 

  26. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4Å resolution. Science 289, 905–920 (2000).

    Article  CAS  Google Scholar 

  27. Wimberly, B.T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    Article  CAS  Google Scholar 

  28. Schuwirth, B.S. et al. Structures of the bacterial ribosome at 3.5Å resolution. Science 310, 827–834 (2005).

    Article  CAS  Google Scholar 

  29. Yamaguchi, K., von Knoblauch, K. & Subramanian, A.R. The plastid ribosomal proteins. J. Biol. Chem. 275, 28455–28465 (2000).

    Article  CAS  Google Scholar 

  30. Yamaguchi, K. & Subramanian, A.R. The plastid ribosomal proteins. J. Biol. Chem. 275, 28466–28482 (2000).

    Article  CAS  Google Scholar 

  31. Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiol. Plant. 15, 473–497 (1962).

    Article  CAS  Google Scholar 

  32. Shinozaki, K. et al. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5, 2043–2049 (1986).

    Article  CAS  Google Scholar 

  33. Svab, Z., Hajdukiewicz, P. & Maliga, P. Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA 87, 8526–8530 (1990).

    Article  CAS  Google Scholar 

  34. Bock, R. Transgenic chloroplasts in basic research and plant biotechnology. J. Mol. Biol. 312, 425–438 (2001).

    Article  CAS  Google Scholar 

  35. Doyle, J.J. & Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 12, 13–15 (1990).

    Google Scholar 

  36. Barkan, A. Approaches to investigating nuclear genes that function in chloroplast biogenesis in land plants. Methods Enzymol. 297, 38–57 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the MPI-MP Green Team for plant care and cultivation and S. Ruf for helpful discussion and advice. We are grateful to J. Pieritz and J. Kehr for help with mass spectrometric protein sequencing. M.R. is the recipient of a fellowship from the Deutscher Akademischer Austauschdienst (DAAD, Germany) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil). This research was financed by the Max Planck Society and a grant from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Bock.

Supplementary information

Supplementary Text and Figures

Supplementary Fig. 1, Table 1 & Methods (PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogalski, M., Karcher, D. & Bock, R. Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Mol Biol 15, 192–198 (2008). https://doi.org/10.1038/nsmb.1370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1370

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing