Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visualization of membrane protein domains by cryo-electron microscopy of dengue virus

Abstract

Improved technology for reconstructing cryo-electron microscopy (cryo-EM) images has now made it possible to determine secondary structural features of membrane proteins in enveloped viruses. The structure of mature dengue virus particles was determined to a resolution of 9.5 Å by cryo-EM and image reconstruction techniques, establishing the secondary structural disposition of the 180 envelope (E) and 180 membrane (M) proteins in the lipid envelope. The α-helical 'stem' regions of the E molecules, as well as part of the N-terminal section of the M proteins, are buried in the outer leaflet of the viral membrane. The 'anchor' regions of E and the M proteins each form antiparallel E-E and M-M transmembrane α-helices, leaving their C termini on the exterior of the viral membrane, consistent with the predicted topology of the unprocessed polyprotein. This is one of only a few determinations of the disposition of transmembrane proteins in situ and shows that the nucleocapsid core and envelope proteins do not have a direct interaction in the mature virus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dengue virus structure.
Figure 2: Secondary structural predictions based on the primary sequences of the E and M stem-anchor regions.
Figure 3: Stereoscopic diagrams showing the fit of the Cα backbones for the E and M regions into the cryo-EM density (gray) of the outer lipid (green) leaflet associated with the E dimer on the icosahedral two-fold axis.
Figure 4: Diagrams of the dengue virus ectodomain and transmembrane domain proteins.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Werten, P.J.L. et al. Progress in the analysis of membrane protein structure and function. FEBS Lett. 529, 65–72 (2002).

    Article  CAS  Google Scholar 

  2. Unger, V.M., Kumar, N.M., Gilula, N.B. & Yeager, M. Projection structure of a gap junction membrane channel at 7 Å resolution. Nat. Struct. Biol. 4, 39–43 (1997).

    Article  CAS  Google Scholar 

  3. Grigorieff, N., Ceska, T.A., Downing, K.H., Baldwin, J.M. & Henderson, R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421 (1996).

    Article  CAS  Google Scholar 

  4. Cockburn, J.J.B., Bamford, J.K.H., Grimes, J.M., Bamford, D.H. & Stuart, D.I. Crystallization of the membrane-containing bacteriophage PRD1 in quartz capillaries by vapour diffusion. Acta Crystallogr. D 59, 538–540 (2003).

    Article  CAS  Google Scholar 

  5. Lindenbach, B.D. & Rice, C.M. Flaviviridae: the viruses and their replication. In Fields Virology (eds. Knipe, D.M. & Howley, P.M.) 991–1041 (Lippincott Williams & Wilkins, Philadelphia, Pennsylvania, USA, 2001).

    Google Scholar 

  6. Burke, D.S. & Monath, T.P. Flaviviruses. In Fields Virology (eds. Knipe, D.M. & Howley, P.M.) 1043–1125 (Lippincott Williams & Wilkins, Philadelphia, Pennsylvania, USA, 2001).

    Google Scholar 

  7. Solomon, T. & Mallewa, M. Dengue and other emerging flaviviruses. J. Infect. 42, 104–115 (2001).

    Article  CAS  Google Scholar 

  8. Hahn, Y.S. et al. Nucleotide sequence of dengue 2 RNA and comparison of the encoded proteins with those of other flaviviruses. Virology 162, 167–180 (1988).

    Article  CAS  Google Scholar 

  9. Elshuber, S., Allison, S.L., Heinz, F.X. & Mandl, C.W. Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J. Gen. Virol. 84, 183–191 (2003).

    Article  CAS  Google Scholar 

  10. Kuhn, R.J. et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725 (2002).

    Article  CAS  Google Scholar 

  11. Heinz, F.X. et al. The flavivirus envelope protein E: isolation of a soluble form from tick-borne encephalitis virus and its crystallization. J. Virol. 65, 5579–5583 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rey, F.A., Heinz, F.X., Mandl, C., Kunz, C. & Harrison, S.C. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291–298 (1995).

    Article  CAS  Google Scholar 

  13. Zhang, Y. et al. Structures of immature flavivirus particles. EMBO J. 22, 2604–2613 (2003).

    Article  CAS  Google Scholar 

  14. Caspar, D.L.D. & Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27, 1–24 (1962).

    Article  CAS  Google Scholar 

  15. Stiasny, K., Allison, S.L., Marchler-Bauer, A., Kunz, C. & Heinz, F.X. Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. J. Virol. 70, 8142–8147 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Allison, S.L., Schalich, J., Stiasny, K., Mandl, C.W. & Heinz, F.X. Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J. Virol. 75, 4268–4275 (2001).

    Article  CAS  Google Scholar 

  17. Roehrig, J.T., Johnson, A.J., Hunt, A.R., Bolin, R.A. & Chu, M.C. Antibodies to dengue 2 virus E-glycoprotein syntheti(c peptides identify antigenic conformation. Virology 177, 668–675 (1990).

    Article  CAS  Google Scholar 

  18. Bhardwaj, S., Holbrook, M., Shope, R.E., Barrett, A.D.T. & Watowich, S.J. Biophysical characterization and vector-specific antagonist activity of domain III of the tick-borne flavivirus envelope protein. J. Virol. 75, 4002–4007 (2001).

    Article  CAS  Google Scholar 

  19. Crill, W.D. & Roehrig, J.T. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J. Virol. 75, 7769–7773 (2001).

    Article  CAS  Google Scholar 

  20. Beasley, D.W.C. & Barrett, A.D.T. Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J. Virol. 76, 13097–13100 (2002).

    Article  CAS  Google Scholar 

  21. Allison, S.L., Stiasny, K., Stadler, K., Mandl, C.W. & Heinz, F.X. Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E. J. Virol. 73, 5605–5612 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rossmann, M.G., Bernal, R. & Pletnev, S.V. Combining electron microscopic with X-ray crystallographic structures. J. Struct. Biol. 136, 190–200 (2001).

    Article  CAS  Google Scholar 

  23. Johnson, A.J., Guirakhoo, F. & Roehrig, J.T. The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology 203, 241–249 (1994).

    Article  CAS  Google Scholar 

  24. Smith, G.W. & Wright, P.J. Synthesis of proteins and glycoproteins in dengue type 2 virus-infected vero and Aedes albopictus cells. J. Gen. Virol. 66, 559–571 (1985).

    Article  CAS  Google Scholar 

  25. McGuffin, L.J., Bryson, K. & Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405 (2000).

    Article  CAS  Google Scholar 

  26. Zhang, W. et al. Placement of the structural proteins in Sindbis virus. J. Virol. 76, 11645–11658 (2002).

    Article  CAS  Google Scholar 

  27. Jones, C.T. et al. Flavivirus capsid protein is a dimeric α-helical protein. J. Virol. 77, 7147–7179 (2003).

    Google Scholar 

  28. Mancini, E.J., Clarke, M., Gowen, B., Rutten, T. & Fuller, S.D. Cryo-electron microscopy reveals the functional anatomy of an enveloped virus, Semliki Forest virus. Mol. Cell 5, 255–266 (2000).

    Article  CAS  Google Scholar 

  29. Lescar, J. et al. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105, 137–148 (2001).

    Article  CAS  Google Scholar 

  30. Barth, B.U., Wahlberg, J.M. & Garoff, H. The oligomerization reaction of the Semliki Forest virus membrane protein subunits. J. Cell. Biol. 128, 283–291 (1995).

    Article  CAS  Google Scholar 

  31. Lorenz, I.C., Allison, S.L., Heinz, F.X. & Helenius, A. Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J. Virol. 76, 5480–5491 (2002).

    Article  CAS  Google Scholar 

  32. Lee, S. et al. Identification of a protein binding site on the surface of the alphavirus nucleocapsid and its implication in virus assembly. Structure 4, 531–541 (1996).

    Article  CAS  Google Scholar 

  33. Skoging, U., Vihinen, M., Nilsson, L. & Liljeström, P. Aromatic interactions define the binding of the alphavirus spike to its nucleocapsid. Structure 4, 519–529 (1996).

    Article  CAS  Google Scholar 

  34. Strauss, J.H., Strauss, E.G. & Kuhn, R.J. Budding of alphaviruses. Trends Microbiol. 3, 346–350 (1995).

    Article  CAS  Google Scholar 

  35. Ng, M.L., Tan, S.H. & Chu, J.J. Transport and budding at two distinct sites of visible nucleocapsids of West Nile (Sarafend) virus. J. Med. Virol. 65, 758–764 (2001).

    Article  CAS  Google Scholar 

  36. Strauss, J.H. & Strauss, E.G. Current advances in yellow fever research. In More About Microbe Hunters—Then and Now (eds. Koprowski, H. & Oldstone, M.B.A.) 113–137 (Medi-Ed Press, Bloomington, Illinois, USA, 1996).

    Google Scholar 

  37. Ji, Y., Marinescu, D.C., Zhang, W. & Baker, T.S. Orientation Refinement of Virus Structures with Unknown Symmetry (IEEE Computer Society, Los Alamitos, California, USA, 2003).

    Google Scholar 

  38. Rossmann, M.G. & Tao, Y. Cryo-electron microscopy reconstruction of partially symmetric objects. J. Struct. Biol. 125, 196–208 (1999).

    Article  CAS  Google Scholar 

  39. Modis, Y, Ogata, S., Clements, D. & Harrison, S.C. A ligand–binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA 100, 6986–6991 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Strauss for helpful discussions and R. Ashmore, C.R. Xiao, Y. Ji and D. Marinescu for the use of their various computer programs that were essential for calculating the image reconstruction. We are grateful for an equipment grant from the Keck Foundation. This work was supported by a US National Institutes of Health (NIH) Program Project grant to M.G.R., R.J.K. and T.S.B., by NIH grants to T.S.B. and J.H.S. and by a US National Science Foundation grant to T.S.B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael G Rossmann or Richard J Kuhn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Chipman, P., Corver, J. et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Mol Biol 10, 907–912 (2003). https://doi.org/10.1038/nsb990

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing