Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural framework of fructosyl transfer in Bacillus subtilis levansucrase

Abstract

Many bacteria and about 40,000 plant species form primary carbohydrate reserves based on fructan; these polymers of β-D-fructofuranose are thought to confer tolerance to drought and frost in plants. Microbial fructan, the β(2,6)-linked levan, is synthesized directly from sucrose by levansucrase, which is able to catalyze both sucrose hydrolysis and levan polymerization. The crystal structure of Bacillus subtilis levansucrase, determined to a resolution of 1.5 Å, shows a rare five-fold β-propeller topology with a deep, negatively charged central pocket. Arg360, a residue essential for polymerase activity, lies in a solvent-exposed site adjacent to the central pocket. Mutagenesis data and the sucrose-bound structure of inactive levansucrase E342A, at a resolution of 2.1 Å, strongly suggest that three conserved acidic side chains in the central pocket are critical for catalysis, and presumably function as nucleophile (Asp86) and general acid (Glu342), or stabilize the transition state (Asp247).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence of B. subtilis levansucrase and secondary structure assignment.
Figure 2: Electron density of the Ca2+ and sucrose binding sites of B. subtilis levansucrase.
Figure 3: Ribbon diagram of levansucrase and superimposition with Cellvibrio japonicus α-L-arabinanase A43 (Arb43A).
Figure 4: Details of the active site of levansucrase.
Figure 5: Activity assay probing levan synthesis.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hendry, G. The ecological significance of fructan in a contemporary flora. New Phytol. 106, 201–216 (1987).

    Article  CAS  Google Scholar 

  2. Cairns, A.J. Fructan biosynthesis in transgenic plants. J. Exp. Bot. 54, 549–567 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Vijn, I. & Smeekens, S. Fructan: more than a reserve carbohydrate? Plant Physiol. 120, 351–360 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Han, Y.W. Microbial levan. Adv. Appl. Microbiol. 35, 171–194 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Chambert, R., Treboul, G. & Dedonder, R. Kinetic studies of levansucrase of Bacillus subtilis. Eur. J. Biochem. 41, 285–300 (1974).

    Article  CAS  PubMed  Google Scholar 

  6. Coutinho, P.M. & Henrissat, B. in Recent Advances in Carbohydrate Bioengineering (eds. Gilbert, H.J., Davies, G., Henrissat, B. & Svensson, B.) 3–12 (The Royal Society of Chemistry, Cambridge, UK, 1999).

    Google Scholar 

  7. Rye, C.S. & Withers, S.G. Glycosidase mechanisms. Curr. Opin. Chem. Biol. 4, 573–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Chambert, R. & Gonzy-Treboul, G. Levansucrase of Bacillus subtilis: kinetic and thermodynamic aspects of transfructosylation processes. Eur. J. Biochem. 62, 55–64 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Hernandez, L. et al. Isolation and enzymic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. Biochem. J. 309, 113–118 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song, D.D. & Jacques, N.A. Purification and enzymic properties of the fructosyltransferase of Streptococcus salivarius ATCC 25975. Biochem. J. 341, 285–291 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chambert, R. & Gonzy-Treboul, G. Levansucrase of Bacillus subtilis. Characterization of a stabilized fructosyl–enzyme complex and identification of an aspartyl residue as the binding site of the fructosyl group. Eur. J. Biochem. 71, 493–508 (1976).

    Article  CAS  PubMed  Google Scholar 

  12. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 30, 276–280 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song, D.D. & Jacques, N.A. Mutation of aspartic acid residues in the fructosyltransferase of Streptococcus salivarius ATCC 25975. Biochem. J. 344 (Part 1), 259–264 (1999).

    Google Scholar 

  14. Batista, F.R. et al. Substitution of Asp-309 by Asn in the Arg-Asp-Pro (RDP) motif of Acetobacter diazotrophicus levansucrase affects sucrose hydrolysis, but not enzyme specificity. Biochem. J. 337 (Part 3), 503–506 (1999).

    Article  Google Scholar 

  15. Yanase, H. et al. Identification of functionally important amino acid residues in Zymomonas mobilis levansucrase. J. Biochem. 132, 565–572 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Chambert, R. & Petit-Glatron, M.F. Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. Biochem. J. 279, 35–41 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kannan, R. et al. Molecular cloning and characterization of the extracellular sucrase gene (sacC) of Zymomonas mobilis. Arch. Microbiol. 163, 195–204 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Pons, T., Hernandez, L., Batista, F.R. & Chinea, G. Prediction of a common β-propeller catalytic domain for fructosyltransferases of different origin and substrate specificity. Protein Sci. 9, 2285–2291 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Naumoff, D.G. Conserved sequence motifs in levansucrases and bifunctional β-xylosidases and α-L-arabinases. FEBS Lett. 448, 177–179 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Nurizzo, D. et al. Cellvibrio japonicus α-L-arabinanase 43A has a novel five-blade β-propeller fold. Nat. Struct. Biol. 9, 665–668 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. LeBrun, E. & van Rapenbusch, R. The structure of Bacillus subtilis levansucrase at 3.8 Å resolution. J. Biol. Chem. 255, 12034–12036 (1980).

    CAS  PubMed  Google Scholar 

  22. Beisel, H.G., Kawabata, S., Iwanaga, S., Huber, R. & Bode, W. Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. EMBO J. 18, 2313–2322 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paoli, M. Protein folds propelled by diversity. Prog. Biophys. Mol. Biol. 76, 103–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Petit-Glatron, M.F., Grajcar, L., Munz, A. & Chambert, R. The contribution of the cell wall to a transmembrane calcium gradient could play a key role in Bacillus subtilis protein secretion. Mol. Microbiol. 9, 1097–1106 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Harding, M.M. Geometry of metal–ligand interactions in proteins. Acta Crystallogr. D 57, 401–411 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Fülöp, V., Szeltner, Z. & Polgar, L. Catalysis of serine oligopeptidases is controlled by a gating filter mechanism. EMBO Rep. 1, 277–281 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Petit-Glatron, M.F., Benyahia, F. & Chambert, R. Secretion of Bacillus subtilis levansucrase: a possible two-step mechanism. Eur. J. Biochem. 163, 379–387 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Reddy, A. & Maley, F. Studies on identifying the catalytic role of Glu-204 in the active site of yeast invertase. J. Biol. Chem. 271, 13953–13957 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Dedonder, R. Levansucrase from Bacillus subtilis. Methods Enzymol. 86, 500–505 (1966).

    Article  Google Scholar 

  30. Sierks, M.R. & Svensson, B. Energetic and mechanistic studies of glucoamylase using molecular recognition of maltose OH groups coupled with site-directed mutagenesis. Biochemistry 39, 8585–8592 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Vasella, A., Davies, G.J. & Böhm, M. Glycosidase mechanisms. Curr. Opin. Chem. Biol. 6, 619–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. van den Elsen, J.M., Kuntz, D.A. & Rose, D.R. Structure of Golgi α-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. EMBO J. 20, 3008–3017 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chambert, R. & Petit-Glatron, M.F. Reversible thermal unfolding of Bacillus subtilis levansucrase is modulated by Fe3+ and Ca2+. FEBS Lett. 275, 61–64 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Collaborative Computational Project Number 4. The CCP4 Suite of Programs for Protein Crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  36. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Terwilliger, T.C. Automated structure solution, density modification and model building. Acta Crystallogr. D 58, 1937–1940 (2002).

    Article  PubMed  Google Scholar 

  38. Jones, T.A. & Thirup, S. Using known substructures in protein model building and crystallography. EMBO J. 5, 819–822 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  40. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. A 54, 905–921 (1998).

    Article  Google Scholar 

  41. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Hodel, A., Kim, S.-H. & Brünger, A. Model bias in crystal structures. Acta Crystallogr. A 48, 851–858 (1992).

    Article  Google Scholar 

  43. Kleywegt, G.J. & Jones, T.A. Databases in protein crystallography. Acta Crystallogr. D 54, 1119–1131 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr. A 47, 392–400 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the Royal Society and the School of Biosciences. G.M. is a recipient of the Adrian Brown Scholarship. We thank O.C. Mather for help with data collection and staff at ESRF for support at the beamlines. We used a computer cluster funded by the UK Medical Research Council and GlaxoWellcome, and received much valued technical advice from O.S. Smart, A.J. Pemberton and C. Cureton. We are indebted to R. Chambert for valuable discussions, to G. Waksman, J.B. Jackson, C.W. Wharton and S.A. White for comments on the manuscript and to L.M. Machesky and R.H. Insall for sharing their equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Fütterer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, G., Fütterer, K. Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Mol Biol 10, 935–941 (2003). https://doi.org/10.1038/nsb974

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb974

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing