Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains

Abstract

The ATPase p97/VCP affects multiple events within the cell. These events include the alteration of both nuclear and mitotic Golgi membranes, the dislocation of ubiquitylated proteins from the endoplasmic reticulum and regulation of the NF-κb pathway. Here we present the crystal structure of full-length Mus musculus p97/VCP in complex with a mixture of ADP and ADP–AlFx at a resolution of 4.7 Å. This is the first complete hexameric structure of a protein containing tandem AAA (ATPases associated with a variety of cellular activities) domains. Comparison of the crystal structure and cryo-electron microscopy (EM) reconstructions reveals large conformational changes in the helical subdomains during the hydrolysis cycle. Structural and functional data imply a communication mechanism between the AAA domains. A Zn2+ occludes the central pore of the hexamer, suggesting that substrate does not thread through the pore of the molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain diagram and electron density maps for selected regions.
Figure 2: p97/VCP protomer and pore schematic.
Figure 3: Protomer views and schematic.
Figure 4: Primary sequence alignment of D1 to D2, with secondary structural elements assigned.
Figure 5: ADP titration and fit to cryo-EM densities.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hetzer, M. et al. Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat. Cell Biol. 3, 1086–1091 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Rabouille, C., Levine, T.P., Peters, J.M. & Warren, G. An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82, 905–914 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Ye, Y., Meyer, H.H. & Rapoport, T.A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652–656 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Rabinovich, E., Kerem, A., Frohlich, K.U., Diamant, N. & Bar-Nun, S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell. Biol. 22, 626–634 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Braun, S., Matuschewski, K., Rape, M., Thoms, S. & Jentsch, S. Role of the ubiquitin-selective CDC48(UFD1/NPL4)chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J. 21, 615–621 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Asai, T. et al. VCP (p97) regulates NF-κB signaling pathway, which is important for metastasis of osteosarcoma cell line. Jpn. J. Cancer Res. 93, 296–304 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kondo, H. et al. p47 is a cofactor for p97-mediated membrane fusion. Nature 388, 75–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Uchiyama, K. et al. VCIP135, a novel essential factor for p97/p47-mediated membrane fusion, is required for Golgi and ER assembly in vivo. J. Cell Biol. 159, 855–866 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meyer, H.H., Wang, Y. & Warren, G. Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J. 21, 5645–5652 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nagahama, M. et al. SVIP is a novel VCP/p97-interacting protein whose expression causes cell vacuolation. Mol. Biol. Cell 14, 262–273 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hirabayashi, M. et al. VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration. Cell Death Differ. 8, 977–984 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Higashiyama, H. et al. Identification of ter94, Drosophila VCP, as a modulator of polyglutamine-induced neurodegeneration. Cell Death Differ. 9, 264–273 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Mizuno, Y., Hori, S., Kakizuka, A. & Okamoto, K. Vacuole-creating protein in neurodegenerative diseases in humans. Neurosci. Lett. 343, 77–80 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Frohlich, K.U. et al. Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation, and gene expression. J. Cell Biol. 114, 443–453 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Lamb, J.R., Fu, V., Wirtz, E. & Bangs, J.D. Functional analysis of the trypanosomal AAA protein TbVCP with trans-dominant ATP hydrolysis mutants. J. Biol. Chem. 276, 21512–21520 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Feiler, H.S. et al. The higher plant Arabidopsis thaliana encodes a functional CDC48 homolog which is highly expressed in dividing and expanding cells. EMBO J. 14, 5626–5637 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tagaya, M., Wilson, D.W., Brunner, M., Arango, N. & Rothman, J.E. Domain structure of an N-ethylmaleimide-sensitive fusion protein involved in vesicular transport. J. Biol. Chem. 268, 2662–2666 (1993).

    CAS  PubMed  Google Scholar 

  18. Malhotra, V., Orci, L., Glick, B.S., Block, M.R. & Rothman, J.E. Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell 54, 221–227 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Rockel, B. et al. Structure of VAT, a CDC48/p97 ATPase homolog from the archaeon Thermoplasma acidophilum as studied by electron tomography. FEBS Lett. 451, 27–32 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, R.C., Jahn, R. & Brunger, A.T. NSF N-terminal domain crystal structure: models of NSF function. Mol. Cell 4, 97–107 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Yu, R.C., Hanson, P.I., Jahn, R. & Brunger, A.T. Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP. Nat. Struct. Biol. 5, 803–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. May, A.P., Misura, K.M., Whiteheart, S.W. & Weis, W.I. Crystal structure of the amino-terminal domain of N-ethylmaleimide-sensitive fusion protein. Nat. Cell Biol. 1, 175–182 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Lenzen, C.U., Steinmann, D., Whiteheart, S.W. & Weis, W.I. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94, 525–536 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Coles, M. et al. The solution structure of VAT-N reveals a 'missing link' in the evolution of complex enzymes from a simple βαββ element. Curr. Biol. 9, 1158–1168 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Babor, S.M. & Fass, D. Crystal structure of the Sec18p N-terminal domain. Proc. Natl. Acad. Sci. USA 96, 14759–14764 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, X. et al. Structure of the AAA ATPase p97. Mol. Cell 6, 1473–1484 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Rouiller, I. et al. Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle. Nat. Struct. Biol. 9, 950–957 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Rockel, B., Jakana, J., Chiu, W. & Baumeister, W. Electron cryo-microscopy of VAT, the archaeal p97/CDC48 homolog from Thermoplasma acidophilum. J. Mol. Biol. 317, 673–681 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Guo, F., Maurizi, M.R., Esser, L. & Xia, D. Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J. Biol. Chem. 277, 46743–46752.

  30. Beuron, F. et al. Motions and negative cooperativity between p97 domains revealed by cryo-electron microscopy and quantised elastic deformational model. J. Mol. Biol. 327, 619–629 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Song, C., Wang, Q. & Li, C.C. ATPase activity of p97-valosin-containing protein (VCP). D2 mediates the major enzyme activity, and D1 contributes to the heat-induced activity. J. Biol. Chem. 278, 3648–3655 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Q., Song, C. & Li, C.C. Hexamerization of p97-VCP is promoted by ATP binding to the D1 domain and required for ATPase and biological activities. Biochem. Biophys. Res. Commun. 300, 253–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  PubMed  Google Scholar 

  34. Benaroudj, N., Zwickl, P., Seemuller, E., Baumeister, W. & Goldberg, A.L. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 11, 69–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Beyer, A. Sequence analysis of the AAA protein family. Protein Sci. 6, 2043–2058 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  38. Bass, R.B., Strop, P., Barclay, M. & Rees, D.C. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298, 1582–1587 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Pannu, N.S., Murshudov, G.N., Dodson, E.J. & Read, R.J. Incorporation of prior phase information strengthens maximum-likelihood structure refinement. Acta Crystallogr. D 54, 1285–1294 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Jiang, J.S. & Brunger, A.T. Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. J. Mol. Biol. 243, 100–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard . Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  43. Schlichting, I. & Reinstein, J. pH influences fluoride coordination number of the AlFx phosphoryl transfer transition state analog. Nat. Struct. Biol. 6, 721–723 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Braig, K., Adams, P.D. & Brunger, A.T. Conformational variability in the refined structure of the chaperonin GroEL at 2.8 Å resolution. Nat. Struct. Biol. 2, 1083–1094 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Indyk, L. & Fisher, H.F. Theoretical aspects of isothermal titration calorimetry. Methods Enzymol. 295, 350–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 24, 946–950 (1993).

    Google Scholar 

Download references

Acknowledgements

We thank G. Warren for supplying the initial p97/VCP clones, P. Adams, C. Chaudhry, I. Rouiller, P. Strop, W. Weis and L. Wilson-Kubalek for stimulating discussions, A. Joachimiak for generous access to beamline ID-19 at Advanced Photon Source, M. Boulanger for expert assistance with ITC experiments and C. Garcia for generous access to ITC equipment, E. Gabriel for assistance with crystal production and A. May and N. Gassner for a critical reading of the manuscript. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the US National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel T Brunger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeLaBarre, B., Brunger, A. Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nat Struct Mol Biol 10, 856–863 (2003). https://doi.org/10.1038/nsb972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb972

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing