Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The mechanical stability of ubiquitin is linkage dependent

Abstract

Ubiquitin chains are formed through the action of a set of enzymes that covalently link ubiquitin either through peptide bonds or through isopeptide bonds between their C terminus and any of four lysine residues. These naturally occurring polyproteins allow one to study the mechanical stability of a protein, when force is applied through different linkages. Here we used single-molecule force spectroscopy techniques to examine the mechanical stability of N-C–linked and Lys48-C–linked ubiquitin chains. We combined these experiments with steered molecular dynamics (SMD) simulations and found that the mechanical stability and unfolding pathway of ubiquitin strongly depend on the linkage through which the mechanical force is applied to the protein. Hence, a protein that is otherwise very stable may be easily unfolded by a relatively weak mechanical force applied through the right linkage. This may be a widespread mechanism in biological systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanical properties of N-C polyubiquitin.
Figure 2: The linkage between domains markedly affects the mechanical properties of ubiquitin.
Figure 3: The mechanical unfolding forces of ubiquitin chains depends on the rate at which they are pulled.
Figure 4: The linkage-dependent properties of ubiquitin reproduced in silico using steered molecular dynamics.

Similar content being viewed by others

References

  1. Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  2. Weissman, A.M. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell. Biol. 2, 169–178 (2001).

    Article  CAS  Google Scholar 

  3. Hochstrasser, M. & Wang, J. Unraveling the means to the end in ATP-dependent proteases. Nat. Struct. Biol. 8, 294–296 (2001).

    Article  CAS  Google Scholar 

  4. Lee, C., Schwartz, M.P., Prakash, S., Iwakura, M. & Matouschek, A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 7, 627–637 (2001).

    Article  CAS  Google Scholar 

  5. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  6. Oberhauser, A.F., Marszalek, P.E., Erickson, H.P. & Fernandez, J.M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998).

    Article  CAS  Google Scholar 

  7. Lu, H., Isralewitz, B., Krammer, A., Vogel, V. & Schulten, K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75, 662–671 (1998).

    Article  CAS  Google Scholar 

  8. Fisher, T.E., Marszalek, P.E. & Fernandez, J.M. Stretching single molecules into novel conformations using the atomic force microscope. Nat. Struct. Biol. 7, 719–724 (2000).

    Article  CAS  Google Scholar 

  9. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl. Acad. Sci. USA 96, 3694–3699 (1999).

    Article  CAS  Google Scholar 

  10. Li, H. et al. Reverse engineering of the giant muscle protein titin. Nature 418, 998–1002 (2002).

    Article  CAS  Google Scholar 

  11. Marszalek, P.E. et al. Mechanical unfolding intermediates in titin modules. Nature 402, 100–103 (1999).

    Article  CAS  Google Scholar 

  12. Yang, G. et al. Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. Proc. Natl. Acad. Sci. USA 97, 139–144 (2000).

    Article  CAS  Google Scholar 

  13. Lenne, P.F., Raae, A.J., Altmann, S.M., Saraste, M. & Horber, J.K. States and transitions during forced unfolding of a single spectrin repeat. FEBS Lett. 476, 124–128 (2000).

    Article  CAS  Google Scholar 

  14. Best, R.B., Li, B., Steward, A., Daggett, V. & Clarke, J. Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys. J. 81, 2344–2356 (2001).

    Article  CAS  Google Scholar 

  15. Brockwell, D.J. et al. The effect of core destabilization on the mechanical resistance of I27. Biophys. J. 83, 458–472 (2002).

    Article  CAS  Google Scholar 

  16. Baumeister, W., Cejka, Z., Kania, M. & Seemuller, E. The proteasome: a macromolecular assembly designed to confine proteolysis to a nanocompartment. Biol. Chem. 378, 121–130 (1997).

    CAS  PubMed  Google Scholar 

  17. Khorasanizadeh, S., Peters, I.D., Butt, T.R. & Roder, H. Folding and stability of a tryptophan-containing mutant of ubiquitin. Biochemistry 32, 7054–7063 (1993).

    Article  CAS  Google Scholar 

  18. Marko, J.F. & Siggia, E.D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).

    Article  CAS  Google Scholar 

  19. Oesterhelt, F. et al. Unfolding pathways of individual bacteriorhodopsins. Science 288, 143–146 (2000).

    Article  CAS  Google Scholar 

  20. Vijay–Kumar, S., Bugg, C.E. & Cook, W.J. Structure of ubiquitin refined at 1.8 Å resolution. J. Mol. Biol. 194, 531–544 (1987).

    Article  Google Scholar 

  21. Li, H., Oberhauser, A.F., Fowler, S.B., Clarke, J. & Fernandez, J.M. Atomic force microscopy reveals the mechanical design of a modular protein. Proc. Natl. Acad. Sci. USA 97, 6527–6531 (2000).

    Article  CAS  Google Scholar 

  22. Cook, W.J., Jeffrey, L.C., Kasperek, E. & Pickart, C.M. Structure of tetraubiquitin shows how multiubiquitin chains can be formed. J. Mol. Biol. 236, 601–609 (1994).

    Article  CAS  Google Scholar 

  23. Varadan, R., Walker, O., Pickart, C. & Fushman, D. Structural properties of polyubiquitin chains in solution. J. Mol. Biol. 324, 637–647 (2002).

    Article  CAS  Google Scholar 

  24. Li, H., Carrion-Vazquez, M., Oberhauser, A.F., Marszalek, P.E. & Fernandez, J.M. Point mutations alter the mechanical stability of immunoglobulin modules. Nat. Struct. Biol. 7, 1117–1120 (2000).

    Article  CAS  Google Scholar 

  25. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    Article  CAS  Google Scholar 

  26. Best, R.B., Fowler, S.B., Toca-Herrera, J.L. & Clarke, J. A simple method for probing the mechanical unfolding pathway of proteins in detail. Proc. Natl. Acad. Sci. USA 99, 12143–12148 (2002).

    Article  CAS  Google Scholar 

  27. Oberhauser, A.F., Hansma, P.K., Carrion-Vazquez, M. & Fernandez, J.M. Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc. Natl. Acad. Sci. USA 98, 468–472 (2001).

    Article  CAS  Google Scholar 

  28. Lu, H. & Schulten, K. The key event in force-induced unfolding of Titin's immunoglobulin domains. Biophys. J. 79, 51–65 (2000).

    Article  CAS  Google Scholar 

  29. Gao, M., Lu, H. & Schulten, K. Simulated refolding of stretched titin immunoglobulin domains. Biophys. J. 81, 2268–2277 (2001).

    Article  CAS  Google Scholar 

  30. Beal, R.E., Toscano-Cantaffa, D., Young, P., Rechsteiner, M. & Pickart, C.M. The hydrophobic effect contributes to polyubiquitin chain recognition. Biochemistry 37, 2925–2934 (1998).

    Article  CAS  Google Scholar 

  31. Thrower, J.S., Hoffman, L., Rechsteiner, M. & Pickart, C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    Article  CAS  Google Scholar 

  32. Vale, R.D. AAA proteins. Lords of the ring. J. Cell Biol. 150, F13–19 (2000).

    Article  CAS  Google Scholar 

  33. Brockwell, D.J. et al. Pulling geometry defines the mechanical resistance of a β-sheet protein. Struct. Biol. 10, 731–737 (2003).

    Article  CAS  Google Scholar 

  34. Minajeva, A., Kulke, M., Fernandez, J.M. & Linke, W.A. Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils. Biophys. J. 80, 1442–1451 (2001).

    Article  CAS  Google Scholar 

  35. Huang, S., Ratliff, K.S., Schwartz, M.P., Spenner, J.M. & Matouschek, A. Mitochondria unfold precursor proteins by unraveling them from their N-termini. Nat. Struct. Biol. 6, 1132–1138 (1999).

    Article  CAS  Google Scholar 

  36. Shtilerman, M., Lorimer, G.H. & Englander, S.W. Chaperonin function: folding by forced unfolding. Science 284, 822–825 (1999).

    Article  CAS  Google Scholar 

  37. Navon, A. & Goldberg, A.L. Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol. Cell 8, 1339–1349 (2001).

    Article  CAS  Google Scholar 

  38. Horwich, A.L., Weber-Ban, E.U. & Finley, D. Chaperone rings in protein folding and degradation. Proc. Natl. Acad. Sci. USA 96, 11033–11040 (1999).

    Article  CAS  Google Scholar 

  39. Wiborg, O. et al. The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 4, 755–759 (1985).

    Article  CAS  Google Scholar 

  40. Sambrook, J. & Russell, D.W. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor, New York, 2001).

    Google Scholar 

  41. Brooks, B. et al. CHARMM: a program for macromolecular energy, minimization and molecular dynamics calculations. J. Comp. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  42. Nelson, M. et al. NAMD—A parallel, object-oriented molecular dynamics program. J. Supercomp. Appl. 10, 251–268 (1996).

    Google Scholar 

  43. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38, 27–38 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Vuust (Statens Serum Institut, Denmark) for his gift of the human Ubi9 cDNA clone. We thank K. Schulten (University of Illinois, Urbana-Champaign) for his support in building and operating our PC-based Beowulf cluster for molecular dynamics simulations. This work was funded by grants from the National Institutes of Health to J.M.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio M Fernandez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrion-Vazquez, M., Li, H., Lu, H. et al. The mechanical stability of ubiquitin is linkage dependent. Nat Struct Mol Biol 10, 738–743 (2003). https://doi.org/10.1038/nsb965

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb965

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing