Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process


The infectious form of prion protein, PrPSc, self-propagates by its conversion of the normal, cellular prion protein molecule PrPC to another PrPSc molecule. It has not yet been demonstrated that recombinant prion protein can convert prion protein molecules from PrPC to PrPSc. Here we show that recombinant hamster prion protein is converted to a second form, PrPRDX, by a redox process in vitro and that this PrPRDX form seeds the conversion of other PrPC molecules to the PrPRDX form. The converted form shows properties of oligomerization and seeded conversion that are characteristic of PrPSc. We also find that the oligomerization can be reversed in vitro. X-ray fiber diffraction suggests an amyloid-like structure for the oligomerized prion protein. A domain-swapping model involving intermolecular disulfide bonds can account for the stability and coexistence of two molecular forms of prion protein and the capacity of the second form for self-propagation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Conversion of the monomeric HisPrP(90–231) to an oligomeric form by a redox process.
Figure 2: Conversion of PrPC to PrPRDX by intermolecular disulfide linkage.
Figure 3: Seeded oligomerization of HisPrP(90–231) by the redox process.
Figure 4: Partial proteinase K (PK) resistance of HisPrPRDX(23–231).
Figure 5: Structural features of HisPrPRDX(90–231).
Figure 6: Speculative model for conversion of PrPC (lower right) to a PrPRDX fibril (lower left).

Accession codes


Protein Data Bank


  1. 1

    Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).

    CAS  Article  Google Scholar 

  2. 2

    Griffith, J.S. Self-replication and scrapie. Nature 215, 1043–1044 (1967).

    CAS  Article  Google Scholar 

  3. 3

    Zahn, R. et al. NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. USA 97, 145–150 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Lopez Garcia, F., Zahn, R., Riek, R. & Wuthrich, K. NMR structure of the bovine prion protein. Proc. Natl. Acad. Sci. USA 97, 8334–8339 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Riek, R. et al. NMR structure of the mouse prion protein domain PrP(121–231). Nature 382, 180–182 (1996).

    CAS  Article  Google Scholar 

  6. 6

    James, T.L. et al. Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc. Natl. Acad. Sci. USA 94, 10086–10091 (1997).

    CAS  Article  Google Scholar 

  7. 7

    Knaus, K.J. et al. Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat. Struct. Biol. 8, 770–774 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Kocisko, D.A. et al. Cell-free formation of protease-resistant prion protein. Nature 370, 471–474 (1994).

    CAS  Article  Google Scholar 

  9. 9

    Horiuchi, M. & Caughey, B. Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state. EMBO J. 18, 3193–3203 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Welker, E., Wedemeyer, W.J. & Scheraga, H.A. A role for intermolecular disulfide bonds in prion diseases? Proc. Natl. Acad. Sci. USA 98, 4334–4336 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Feughelman, M. & Willis, B.K. Thiol-disulfide interchange a potential key to conformational change associated with amyloid fibril formation. J. Theor. Biol. 206, 313–315 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Turk, E., Teplow, D.B., Hood, L.E. & Prusiner, S.B. Purification and properties of the cellular and scrapie hamster prion proteins. Eur. J. Biochem. 176, 21–30 (1988).

    CAS  Article  Google Scholar 

  13. 13

    Welker, E., Raymond, L.D., Scheraga, H.A. & Caughey, B. Intramolecular versus intermolecular disulfide bonds in prion proteins. J. Biol. Chem. 277, 33477–33481 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Prusiner, S.B. et al. Further purification and characterization of scrapie prions. Biochemistry 21, 6942–6950 (1982).

    CAS  Article  Google Scholar 

  15. 15

    Jackson, G.S. et al. Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283, 1935–1937 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Swietnicki, W., Morillas, M., Chen, S.G., Gambetti, P. & Surewicz, W.K. Aggregation and fibrillization of the recombinant human prion protein huPrP90–231. Biochemistry 39, 424–431 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Venkatesan, P., Liu, Z., Hu, Y. & Kaback, H.R. Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: N-ethylmaleimide-sensitive face of helix II. Biochemistry 39, 10649–10655 (2000).

    CAS  Article  Google Scholar 

  18. 18

    McPhie, P. Circular dichroism studies on proteins in films and in solution: estimation of secondary structure by g-factor analysis. Anal. Biochem. 293, 109–119 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Pan, K.-M. et al. Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90, 10962–10966 (1993).

    CAS  Article  Google Scholar 

  20. 20

    Harper, J.D. & Lansburry, P.T. Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997).

    CAS  Article  Google Scholar 

  21. 21

    Caughey, B. Transmissible spongiform encephalopathies, amyloidoses and yeast prions: common threads? Nat. Med. 6, 751–754 (2000).

    CAS  Article  Google Scholar 

  22. 22

    McKinley, M.P., Bolton, D.C. & Prusiner, S.B. A protease-resistant protein is a structural component of the scrapie prion. Cell 35, 57–62 (1983).

    CAS  Article  Google Scholar 

  23. 23

    Caughey, B. et al. Normal and scrapie-associated forms of prion protein differ in their sensitivities to phospholipase and proteases in intact neuroblastoma cells. J. Virol. 64, 1093–1101 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Schlunegger, M.P., Bennet, M.J. & Eisenberg, D. Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. Adv. Protein Chem. 50, 61–122 (1997).

    CAS  Article  Google Scholar 

  25. 25

    Cohen, F.E. Protein misfolding and prion diseases. J. Mol. Biol. 293, 313–320 (1999).

    CAS  Article  Google Scholar 

  26. 26

    Steere, B. & Eisenberg, D. Oligomerization of high-order diphtheria toxin oligomers. Biochemistry 39, 15901–15909 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Weiss, S. et al. Overexpression of active Syrian golden hamster prion protein PrPc as a glutathione S-transferase fusion in heterologous systems. J. Virol. 69, 4776–4783 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank S.B. Prusiner's laboratory for helping us in fermentation of HisPrP(90–231), M. Gingery for electron microscopy, M.R. Sawaya for building the model of the PrPRDX fibril, R.L. Garrell's laboratory for helping us in g-factor analysis, M. Apostol for assistance and P.D. Boyer, T.E. Creighton and A.K. Chamberlain for critical reading of the manuscript. This work was supported by the Howard Hughes Medical Institute and the US National Institutes of Health.

Author information



Corresponding author

Correspondence to David Eisenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, S., Eisenberg, D. Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process. Nat Struct Mol Biol 10, 725–730 (2003).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing