Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for binding of accessory proteins by the appendage domain of GGAs

Abstract

The Golgi-associated, γ-adaptin-related, ADP-ribosylation-factor binding proteins (GGAs) and adaptor protein (AP)-1 are adaptors involved in clathrin-mediated transport between the trans-Golgi network and endosomal system. The appendage domains of GGAs and the AP-1 γ-adaptin subunit are structurally homologous and have been proposed to bind to accessory proteins via interaction with short sequences containing phenylalanines and acidic residues. Here we present the structure of the human GGA1 appendage in complex with its cognate binding peptide from the p56 accessory protein (DDDDFGGFEAAETFD) as determined by X-ray crystallography. The interaction is governed predominantly by packing of the first two phenylalanine residues of the peptide with conserved basic and hydrophobic residues from GGA1. Additionally, several main chain hydrogen bonds cause the peptide to form an additional β-strand on the edge of the preexisting β-sheet of the protein. Isothermal titration calorimetry was used to assess the affinities of different peptides for the GGA and γ-appendage domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic models of adaptor proteins and sequences of appendage domain binding motifs.
Figure 2: Structure of the GGA1 appendage in complex with the DDDDFGGFEAAETFD binding peptide from p56.
Figure 3: Details of the GGA1 appendage–p56 peptide interaction.
Figure 4: ITC binding studies of accessory protein peptides to the GGA and γ-appendage domains.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kirchhausen, T. Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol. 15, 705–732 (1999).

    Article  CAS  Google Scholar 

  2. Boehm, M. & Bonifacino, J.S. Adaptins: the final recount. Mol. Biol. Cell 12, 2907–2920 (2001).

    Article  CAS  Google Scholar 

  3. Scales, S.J., Gomez, M. & Kreis, T.E. Coat proteins regulating membrane traffic. Int. Rev. Cytol. 195, 67–144 (2000).

    Article  CAS  Google Scholar 

  4. Collins, B.M., McCoy, A.J., Kent, H.M., Evans, P.R. & Owen, D.J. Molecular architecture and functional model of the endocytic AP-2 complex. Cell 109, 523–535 (2002).

    Article  CAS  Google Scholar 

  5. Ricotta, D., Conner, S.D., Schmid, S.L., Figura, K.v. & Honing, S. Phosphorylation of the AP-2 mu subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J. Cell Biol. 156, 791–795 (2002).

    Article  CAS  Google Scholar 

  6. Kent, H., McMahon, H., Evans, P., Benmerah, A. & Owen, D. γ-adaptin appendage domain. Structure and binding site for Eps15 and γ-synergin. Structure 10, 1139–1148 (2002).

    Article  CAS  Google Scholar 

  7. Nogi, T. et al. Structural basis for the accessory protein recruitment by the γ-adaptin ear domain. Nat. Struct. Biol. 9, 527–531 (2002).

    CAS  PubMed  Google Scholar 

  8. Boman, A.L., Zhang, C., Zhu, X. & Kahn, R.A. A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol. Biol. Cell 11, 1241–1255 (2000).

    Article  CAS  Google Scholar 

  9. Dell'Angelica, E.C. et al. GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol. 149, 81–94 (2000).

    Article  CAS  Google Scholar 

  10. Hirst, J. et al. A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J. Cell. Biol. 149, 67–80 (2000).

    Article  CAS  Google Scholar 

  11. Poussu, A., Lohi, O. & Lehto, V.P. Vear, a novel Golgi-associated protein with VHS and γ-adaptin “ear” domains. J. Biol. Chem. 275, 7176–7183 (2000).

    Article  CAS  Google Scholar 

  12. Takatsu, H., Yoshino, K. & Nakayama, K. Adaptor γ ear homology domain conserved in γ-adaptin and GGA proteins that interact with γ-synergin. Biochem. Biophys. Res. Commun. 271, 719–725 (2000).

    Article  CAS  Google Scholar 

  13. Boman, A.L. GGA proteins: new players in the sorting game. J. Cell. Sci. 114, 3413–3418 (2001).

    CAS  PubMed  Google Scholar 

  14. Black, M.W. & Pelham, H.R. Membrane traffic: how do GGAs fit in with the adaptors? Curr. Biol. 11, R460–462 (2001).

    Article  CAS  Google Scholar 

  15. Robinson, M.S. & Bonifacino, J.S. Adaptor-related proteins. Curr. Opin. Cell Biol. 13, 444–453 (2001).

    Article  CAS  Google Scholar 

  16. Doray, B., Ghosh P., Griffith, J., Geuze, H.J. & Kornfeld, S. Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science 297, 1700–1703 (2002).

    Article  CAS  Google Scholar 

  17. Puertollano, R., Aguilar, R.C. & Gorshkova, I., Crouch, R.J. & Bonifacino, J.S. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 292, 1712–1716 (2001).

    Article  CAS  Google Scholar 

  18. Takatsu, H., Katoh, Y., Shiba, Y. & Nakayama, K. Golgi-localizing, γ-adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM (VHS) domains. J. Biol. Chem. 276, 28541–28545 (2001).

    Article  CAS  Google Scholar 

  19. Zhu, Y., Doray, B., Poussu, A., Lehto, V.P. & Kornfeld, S. Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science 292, 1716–1718 (2001).

    Article  CAS  Google Scholar 

  20. Doray, B., Bruns, K., Ghosh, P. & Kornfeld, S. Interaction of the cation-dependent mannose 6-phosphate receptor with GGA proteins. J. Biol. Chem. 277, 18477–18482 (2002).

    Article  CAS  Google Scholar 

  21. Misra, S., Puertollano, R., Kato, Y., Bonifacino, J.S. & Hurley, J.H. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 415, 933–937 (2002).

    Article  CAS  Google Scholar 

  22. Shiba, T. et al. Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature 415, 937–941 (2002).

    Article  CAS  Google Scholar 

  23. Puertollano, R., Randazzo, P.A., Presley, J.F., Hartnell, L.M. & Bonifacino, J.S. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell 105, 93–102 (2001).

    Article  CAS  Google Scholar 

  24. Takatsu, H., Yoshino, K., Toda, K. & Nakayama, K. GGA proteins associate with Golgi membranes through interaction between their GGAH domains and ADP-ribosylation factors. Biochem. J. 365, 369–378 (2002).

    Article  CAS  Google Scholar 

  25. Zhdankina, O., Strand, N.L., Redmond, J.M. & Boman, A.L. Yeast GGA proteins interact with GTP-bound Arf and facilitate transport through the Golgi. Yeast 18, 1–18 (2001).

    Article  CAS  Google Scholar 

  26. Collins, B.M., Watson, P.J. & Owen, D.J. The structure of the GGA1 GAT domain reveals the molecular basis for ARF binding and membrane association of GGAs. Dev. Cell 4, 321–332 (2003).

    Article  CAS  Google Scholar 

  27. Costaguta, G., Stefan, C.J., Bensen, E.S., Emr, S.D. & Payne, G.S. Yeast Gga coat proteins function with clathrin in Golgi to endosome transport. Mol. Biol. Cell 12, 1885–1896 (2001).

    Article  CAS  Google Scholar 

  28. Lui, W.W.Y. et al. Binding partners for the COOH-terminal appendage domains of the GGAs and γ-adaptin. Mol. Biol. Cell 14, 2385–2398 (2003).

    Article  CAS  Google Scholar 

  29. Mattera, R., Arighi, C.N., Lodge, R., Zerial, M. & Bonifacino, J.S. Divalent interaction of the GGAs with the Rabaptin-5-Rabex-5 complex. EMBO J. 22, 78–88 (2003).

    Article  CAS  Google Scholar 

  30. Page, L.J., Sowerby, P.J., Lui, W.W. & Robinson, M.S. γ-synergin: an EH domain-containing protein that interacts with γ-adaptin. J. Cell Biol. 146, 993–1004 (1999).

    Article  CAS  Google Scholar 

  31. Kalthoff, C., Groos, S., Kohl, R., Mahrhold, S. & Ungewickell, E.J. Clint: a novel clathrin-binding ENTH-domain protein at the Golgi. Mol. Biol. Cell 13, 4060–4073 (2002).

    Article  CAS  Google Scholar 

  32. Wasiak, S. et al. Entoprotin: a novel clathrin-associated protein identified through subcellular proteomics. J. Cell Biol. 158, 855–862 (2002).

    Article  CAS  Google Scholar 

  33. Mills, I.G. et al. EpsinR: an AP1/clathrin interacting protein involved in vesicle trafficking. J. Cell Biol. 160, 213–222 (2003).

    Article  Google Scholar 

  34. Hirst, J., Motley, A., Harasaki, K., Chew, S.Y.P. & Robinson, M.S. EpsinR: an ENTH domain containing protein that interacts with AP-1. Mol. Biol. Cell 14, 625–641 (2003).

    Article  CAS  Google Scholar 

  35. Duncan, M.C., Costaguta, G. & Payne, G.S. Yeast epsin-related proteins required for Golgi-endosome traffic define a γ-adaptin ear-binding motif. Nat. Cell Biol. 5, 77–81 (2003).

    Article  CAS  Google Scholar 

  36. Owen, D.J. & Evans, P.R. A structural explanation for the recognition of tyrosine based endocytic signals. Science 282, 1327–1332 (1998).

    Article  CAS  Google Scholar 

  37. Brett, T.J., Traub, L.M. & Fremont, D.H. Accessory protein recruitment motifs in clathrin-mediated endocytosis. Structure 10, 797–809 (2002).

    Article  CAS  Google Scholar 

  38. Boll, W. et al. Sequence requirements for the recognition of tyrosine-based endocytic signals by clathrin AP-2 complexes. EMBO J. 15, 5789–5795 (1996).

    Article  CAS  Google Scholar 

  39. Harrison, S.C. Peptide-surface association: the case of PDZ and PTB domains. Cell 86, 341–343 (1996).

    Article  CAS  Google Scholar 

  40. Munro, S. & Nichols, B.J. The GRIP domain—a novel Golgi-targeting domain found in several coiled-coil proteins. Curr. Biol. 9, 377–380 (1999).

    Article  CAS  Google Scholar 

  41. Kjer-Nielsen, L., Teasdale, R.D., van Vliet, C. & Gleeson, P.A. A novel Golgi-localization domain shared by a class of coiled-coil peripheral membrane proteins. Curr. Biol. 9, 377–380 (1999).

    Article  Google Scholar 

  42. Miller, G.J., Mattera, R., Bonifacino, J.S. & Hurley, J.H. Recognition of accessory protein motifs by the γ-adaptin ear domain of GGA3. Nat. Struct. Biol. advance online publication 13 July 2003 doi:10.1038/nsb953.

  43. Aridor, M. & Traub, L.M. Cargo selection in vesicular transport: the making and breaking of a coat. Traffic 3, 537–546 (2002).

    Article  CAS  Google Scholar 

  44. Powell, H.R., The Rossmann Fourier autoindexing algorithm in MOSFLM. Acta Crystallogr. D 55, 1690–1695 (1999).

    Article  CAS  Google Scholar 

  45. Collaborative Computational Project 4 (CCP4). The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  46. Navaza, J. Implementation of molecular replacement in AMoRe. Acta Crystallogr. D 57, 1367–1372 (2001).

    Article  CAS  Google Scholar 

  47. Murshudov, G.N., Vagin, A.A., Lebedev, A., Wilson, K.S. & Dodson, E.J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D 55, 247–255 (1999).

    Article  CAS  Google Scholar 

  48. Jones, T.A., Zou, J.Y., Cowen, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  49. Diederichs, K. & Karplus, P.A. Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat. Struct. Biol. 4, 269–275 (1997).

    Article  CAS  Google Scholar 

  50. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Kent for the γ-appendage DNA, J. Hurley and associates for sharing information prior to publication and M. Noble for helpful discussions. G.J.K.P. is funded by a Marie Curie Fellowship of the European Union. D.J.O. is funded by a Wellcome Trust Senior Research Fellowship in Basic Biomedical Science. M.S.R. is funded by a Wellcome Trust Principal Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett M Collins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, B., Praefcke, G., Robinson, M. et al. Structural basis for binding of accessory proteins by the appendage domain of GGAs. Nat Struct Mol Biol 10, 607–613 (2003). https://doi.org/10.1038/nsb955

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb955

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing