Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coupling of light-induced electron transfer to proton uptake in photosynthesis

Abstract

Light energy is transformed into chemical energy in photosynthesis by coupling a light-induced electron transfer to proton uptake. The resulting proton gradient drives ATP synthesis. In this study, we monitored the light-induced reactions in a 100-kDa photosynthetic protein from 30 ns to 35 s by FTIR difference spectroscopy. The results provide detailed mechanistic insights into the electron and proton transfer reactions of the QA to QB transition: reduction of QA in picoseconds induces protonation of histidines, probably of His126 and His128 in the H subunit at the entrance of the proton uptake channel, and of Asp210 in the L subunit inside the channel at 12 μs and 150 μs. This seems to be a prerequisite for the reduction of QB, mainly at 150 μs. QA is reoxidized at 1.1 ms, and a proton is transferred from Asp210 to Glu212 in the L subunit, the proton donor to QB. Notably, our data indicate that QB is not reduced directly by QA but presumably through an intermediary electron donor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Light-induced electron transfer from P to QA takes place within 200 ps via overlapping prosthetic groups.
Figure 2: Three-dimensional representation of the light-induced IR absorbance changes in the photosynthetic reaction center of Rb. sphaeroides between 1,900 and 1,000 cm−1 with 30-ns time resolution and 7-cm−1 spectral resolution as revealed by global fit analysis.
Figure 3: Absorbance changes of P+, QB and QA marker bands.
Figure 4: On an expanded scale the QAQB → QAQB transition is shown from 1 μs to 10 ms.
Figure 5: Amplitude spectra from 1,900 to 1,000 cm−1 for the three kinetic phases.
Figure 6: Comparison of wild-type and D210N (L) mutant kinetics in the QAQB → QAQB transition.
Figure 7: FTIR results in the context of the structural model (PDB entry 1AIG)6.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Okamura, M.Y., Paddock, M.L., Graige, M.S. & Feher, G. Proton and electron transfer in bacterial reaction centers. Biochim. Biophys. Acta 1458, 148–163 (2000).

    Article  CAS  Google Scholar 

  2. Gerwert, K. Molecular reaction mechanisms of proteins as monitored by time-resolved FTIR spectroscopy. Curr. Opin. Struct. Biol. 3, 769–773 (1993).

    Article  CAS  Google Scholar 

  3. Mäntele, W. Infrared and Fourier-transform infrared spectroscopy. In Biophysical Techniques in Photosynthesis (eds. Amesz, J. & Hoff, A.J.) 137–160 (Kluwer, Dordrecht, Netherlands, 1996).

    Google Scholar 

  4. Vogel, R. & Siebert, F. Vibrational spectroscopy as a tool for probing protein function. Curr. Opin. Chem. Biol. 4, 518–523 (2000).

    Article  CAS  Google Scholar 

  5. Barth, A. & Zscherp, C. What vibrations tell us about proteins. Quart. Rev. Biophysics 35, 369–430 (2002).

    Article  CAS  Google Scholar 

  6. Stowell, M.H.B. et al. Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276, 812–816 (1997).

    Article  CAS  Google Scholar 

  7. Zouni, A. et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409, 739–743 (1997).

    Article  Google Scholar 

  8. Feher, G., Allen, J.P., Okamura, M.Y. & Rees, D.C. Structure and function of bacterial photosynthetic reaction centres. Nature 339, 111–116 (1989).

    Article  CAS  Google Scholar 

  9. Ermler, U., Fritzsch, G., Buchanan, S. & Michel, H. Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions. Structure 2, 925–936 (1994).

    Article  CAS  Google Scholar 

  10. Kuglstatter, A., Ermler, U., Michel, H., Baciou, L. & Fritzsch, G. X-ray structure analyses of photosynthetic reaction center variants from Rhodobacter sphaeroides: structural changes induced by point mutations at position L209 modulate electron and proton transfer. Biochemistry 40, 4253–4260 (2001).

    Article  CAS  Google Scholar 

  11. Brudler, R. et al. Asymmetric binding of the 1- and 4-C=O groups of QA in Rhodobacter sphaeroides R26 reaction centres monitored by Fourier transform infra-red spectroscopy using site-specific isotopically labelled ubiquinone-10. EMBO J. 13, 5523–5530 (1994).

    Article  CAS  Google Scholar 

  12. Breton, J., Boullais, C., Burie, J.-R., Nabedryk, E. & Mioskowski, C. Binding sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy: assignment of the interactions of each carbonyl of QA in Rhodobacter sphaeroides using site-specific 13C-labeled ubiquinone. Biochemistry 33, 14378–14386 (1994).

    Article  CAS  Google Scholar 

  13. Brudler, R. et al. FTIR spectroscopy shows weak symmetric hydrogen bonding of the QB carbonyl groups in Rhodobacter sphaeroides R26 reaction centres. FEBS Lett. 370, 88–92 (1995).

    Article  CAS  Google Scholar 

  14. Breton, J., Boullais, C., Berger, G., Mioskowski, C. & Nabedryk, E. Binding sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy: symmetry of the carbonyl interactions and close equivalence of the QB vibrations in Rhodobacter sphaeroides and Rhodopseudomonas viridis probed by isotope labeling. Biochemistry 34, 11606–11616 (1995).

    Article  CAS  Google Scholar 

  15. Holzapfel, W. et al. Initial electron-transfer in the reaction center from Rhodobacter sphaeroides. Proc. Natl. Acad. Sci. USA 87, 5168–5172 (1990)

    Article  CAS  Google Scholar 

  16. Gray, H.B. & Winkler, J.R. Electron transfer in proteins. Ann. Rev. Biochem. 65, 537–561 (1995).

    Article  Google Scholar 

  17. Moser, C.C., Page, C.C., Farid, R. & Dutton, P.L. Biological electron transfer. J. Bioenerg. Biomembr. 27, 263–274 (1995).

    Article  CAS  Google Scholar 

  18. Debus, R.J., Feher, G. & Okamura, M.Y. Iron-depleted reaction centers from Rhodopseudomonas sphaeroides R-26.1: characterization and reconstitution with Fe2+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+. Biochemistry 25, 2276–2287 (1986).

    Article  CAS  Google Scholar 

  19. Tiede, D., Vázquez, J., Córdova, J. & Marone, P.A. Time-resolved electrochromism associated with the formation of quinone anions in Rhodobacter sphaeroides R-26 reaction center. Biochemistry 35, 10763–10775 (1996).

    Article  CAS  Google Scholar 

  20. Graige, M.S., Feher, G. & Okamura, M.Y. Conformational gating of the electron transfer reaction QAQB → QAQB in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay. Proc. Natl. Acad. Sci. USA 95, 11679–11684 (1998).

    Article  CAS  Google Scholar 

  21. Li, J., Gilroy, D., Tiede, D. & Gunner, M.R. Kinetic phases in the electron transfer from P+QAQB to P+QAQB and the associated processes in Rhodobacter sphaeroides R-26 reaction centers. Biochemistry 37, 2818–2829 (1998).

    Article  CAS  Google Scholar 

  22. Li, J., Takahashi, E. & Gunner, M.R. −ΔG°AB and pH dependence of the electron transfer from P+QAQB to P+QAQB in Rhodobacter sphaeroides reaction centers. Biochemistry 39, 7445–7454 (2000).

    Article  CAS  Google Scholar 

  23. Gerwert, K. Molecular reaction mechanisms of proteins monitored by time-resolved FTIR difference spectroscopy. In Handbook of Vibrational Spectroscopy (eds. Chalmers, J.M. & Griffiths, P.R.) (Wiley, Chichester, UK, 2001).

    Google Scholar 

  24. Hienerwadel, R. et al. Time-resolved infrared spectroscopy of electron transfer in bacterial photosynthetic reaction centers: dynamics of binding and interaction upon QA and QB reduction. Biochemistry 31, 5799–5808 (1992).

    Article  CAS  Google Scholar 

  25. Hienerwadel, R. et al. Protonation of Glu L212 following QB formation in the photosynthetic reaction center of Rhodobacter sphaeroides: evidence from time-resolved infrared spectroscopy. Biochemistry 34, 2832–2843 (1995).

    Article  CAS  Google Scholar 

  26. Uhmann, W., Becker, A., Taran, C. & Siebert, F. Time-resolved FT-IR absorption spectroscopy using a step-scan interferometer. Appl. Spectrosc. 45, 390–397 (1991).

    Article  CAS  Google Scholar 

  27. Burie, J.-R., Leibl, W., Nabedryk, E. & Breton, J. Step-scan FT-IR spectroscopy of electron transfer in the photosynthetic bacterial reaction center. Appl. Spectrosc. 47, 1401–1404 (1993).

    Article  CAS  Google Scholar 

  28. Rammelsberg, R., Hessling, B., Chorongiewski, H. & Gerwert, K. Molecular reaction mechanisms of proteins monitored by nanosecond step-scan FT-IR difference spectroscopy. Appl. Spectrosc. 51, 558–562 (1997).

    Article  CAS  Google Scholar 

  29. Brudler, R. & Gerwert, K. Step-scan FTIR spectroscopy of the QA–QB → QAQB– transition in Rb. sphaeroides R26 reaction centres. Photosynth. Res. 55, 261–266 (1998).

    Article  CAS  Google Scholar 

  30. Hessling, B., Souvignier, G. & Gerwert, K. A model-independent approach to assigning bacteriorhodopsin's intramolecular reactions to photocycle intermediates. Biophysical J. 65, 1929–1941 (1993).

    Article  CAS  Google Scholar 

  31. Gerwert, K., Souvignier, G. & Hess, B. Simultaneous monitoring of light-induced changes in protein side-group protonation, chromophore isomerization, and backbone motion of bacteriorhodopsin by time-resolved Fourier-transform infrared spectroscopy. Proc. Natl. Acad, Sci. USA 87, 9774–9778 (1990).

    Article  CAS  Google Scholar 

  32. Brudler, R., Rammelsberg, R., Woo, T.T., Getzoff, E.D. & Gerwert, K. Structure of the I1 early intermediate of photoactive yellow protein by FTIR spectroscopy. Nat. Struct. Biol. 8, 265–270 (2001).

    Article  CAS  Google Scholar 

  33. Nabedryk, E. et al. A protein conformational change associated with the photoreduction of the primary and secondary quinones in the bacterial reaction center. FEBS Lett. 266, 59–62 (1990).

    Article  CAS  Google Scholar 

  34. Kleinfeld, D., Okamura, M.Y. & Feher, G. Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence for light-induced structural changes. Biochemistry 23, 5780–5786 (1984).

    Article  CAS  Google Scholar 

  35. Venyaminov, S.Yu. & Kalnin, N.N. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers 30, 1243–1257 (1990).

    Article  CAS  Google Scholar 

  36. Nabedryk, E. et al. Fourier transform infrared difference spectroscopy of secondary quinone acceptor photoreduction in proton transfer mutants of Rhodobacter sphaeroides. Biochemistry 34, 14722–14732 (1995).

    Article  CAS  Google Scholar 

  37. Breton, J., Nabedryk, E., Allen, J.P. & Williams, J.A.C. Electrostatic influence of QA reduction on the IR vibrational mode of the 10a-ester C=O of HA demonstrated by mutations at residues Glu L104 and Trp L100 in reaction centers from Rhodobacter sphaeroides. Biochemistry 36, 4515–4525 (1997).

    Article  CAS  Google Scholar 

  38. Rammelsberg, R., Huhn, G., Lübben, M. & Gerwert, K. Bacteriorhodopsin's intramolecular proton-release pathway consists of a hydrogen-bonded network. Biochemistry 37, 5001–5009 (1998).

    Article  CAS  Google Scholar 

  39. Lancaster, C.R.D. & Michel, H. The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, QB . Structure 5, 1339–1359 (1997).

    Article  CAS  Google Scholar 

  40. Noguchi, T., Inoue, Y. & Tang, X.-S. Structure of a histidine ligand in the photosynthetic oxygen-evolving complex as studied by light-induced Fourier transform infrared difference spectroscopy. Biochemistry 38, 10187–10195 (1999).

    Article  CAS  Google Scholar 

  41. Hasegawa, K., Ono, T. & Noguchi, T. Vibrational spectra and ab initio DFT calculations of 4-methylimidazole and its different protonation forms: infrared and raman markers of the protonation state of a histidine side chain. J. Phys. Chem. B. 104, 4253–4265 (2000).

    Article  CAS  Google Scholar 

  42. Axelrod, H.L., Abresch, E.C., Paddock, M.L., Okamura, M.Y. & Feher, G. Determination of the binding sites of the proton transfer inhibitors Cd2+ and Zn2+ in bacterial reaction centers. Proc. Natl. Acad, Sci. USA 97, 1542–1547 (2000).

    Article  CAS  Google Scholar 

  43. Ädelroth, P. et al. Identification of the proton pathway in bacterial reaction centers: decrease of proton transfer rate by mutation of surface histidines at H126 and H128 and chemical rescue by imidazole identifies the initial proton donors. Biochemistry 40, 14538–14546 (2001).

    Article  Google Scholar 

  44. Paddock, M.L. et al. Identification of the proton pathway in bacterial reaction centers: cooperation between Asp-M17 and Asp-L210 facilitates proton transfer to the secondary quinone (QB). Biochemistry 40, 6893–6902 (2001).

    Article  CAS  Google Scholar 

  45. Mezzetti, A. et al. Rapid-scan Fourier transform infrared spectroscopy shows coupling of Glu-L212 protonation and electron transfer to QB in Rhodobacter sphaeroides reaction centers. Biochim. Biophys. Acta 1553, 320–330 (2002).

    Article  CAS  Google Scholar 

  46. Nabedryk, E., Breton, J., Okamura, M.Y. & Paddock, M.L. Simultaneous replacement of Asp-L210 and Asp-M17 with Asn increases proton uptake by Glu-L212 upon first electron transfer to QB in reaction centers from Rhodobacter sphaeroides. Biochemistry 40, 13826–13832 (2001).

    Article  CAS  Google Scholar 

  47. Maróti, P. & Wraight, C.A. Flash-induced H+ binding by bacterial photosynthetic reaction centers: comparison of spectrophotometric and conductimetric methods. Biochim. Biophys. Acta 934, 314–328 (1988).

    Article  Google Scholar 

  48. Breton, J. et al. Vibrational spectroscopy favors a unique QB binding site at the proximal position in wild-type reaction centers and in the Pro-L209 → Tyr mutant from Rhodobacter sphaeroides. Biochemistry 41, 12921–12927 (2002).

    Article  CAS  Google Scholar 

  49. Spassov, V.Z., Luecke, H., Bashford, D. & Gerwert, K. pKa calculations suggest storage of an excess proton in a hydrogen-bonded water network in bacteriorhodopsin. J. Mol. Biol. 312, 203–219 (2001).

    Article  CAS  Google Scholar 

  50. Nugent, J.H.A. Oxygenic photosynthesis—electron transfer in photosystem I and photosystem II. Eur. J. Biochem. 237, 519–531 (1996).

    Article  CAS  Google Scholar 

  51. Farchaus, J.W. & Oesterhelt, D. A Rhodobacter sphaeroides puf L, M and X deletion mutant and its complementation in trans with a 5.3 kb puf operon shuttle fragment. EMBO J. 8, 47–54 (1989).

    Article  CAS  Google Scholar 

  52. Remy, A. Der QAQB → QAQB-Übergang im bakteriellen photosynthetischen Reaktionszentrum von Rhodobacter sphaeroides. Thesis, Ruhr-University Bochum, Bochum, Germany (2002).

  53. Okamura, M.Y., Isaacson, R.A. & Feher, G. Primary acceptor in bacterial photosynthesis: obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas spheroides. Proc. Nat. Acad. Sci. USA 72, 3491–3495 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft. We thank T.A. Egorova-Zachernyuk for providing RC sample material and D. Oesterhelt for providing the Rb. sphaeroides deletion strain pufΔLMX21. We thank C. Fichtner for help in mutagenesis, C. Kandt for preparing Figures 1 and 7 and R. Goody for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Gerwert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remy, A., Gerwert, K. Coupling of light-induced electron transfer to proton uptake in photosynthesis. Nat Struct Mol Biol 10, 637–644 (2003). https://doi.org/10.1038/nsb954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb954

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing