Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The crystal structure of the proprotein processing proteinase furin explains its stringent specificity

An Addendum to this article was published on 01 August 2003

Abstract

In eukaryotes, many essential secreted proteins and peptide hormones are excised from larger precursors by members of a class of calcium-dependent endoproteinases, the prohormone-proprotein convertases (PCs). Furin, the best-characterized member of the mammalian PC family, has essential functions in embryogenesis and homeostasis but is also implicated in various pathologies such as tumor metastasis, neurodegeneration and various bacterial and viral diseases caused by such pathogens as anthrax and pathogenic Ebola virus strains. Furin cleaves protein precursors with narrow specificity following basic Arg-Xaa-Lys/Arg-Arg-like motifs. The 2.6 Å crystal structure of the decanoyl-Arg-Val-Lys-Arg-chloromethylketone (dec-RVKR-cmk)–inhibited mouse furin ectodomain, the first PC structure, reveals an eight-stranded jelly-roll P domain associated with the catalytic domain. Contoured surface loops shape the active site by cleft, thus explaining furin's stringent requirement for arginine at P1 and P4, and lysine at P2 sites by highly charge-complementary pockets. The structure also explains furin's preference for basic residues at P3, P5 and P6 sites. This structure will aid in the rational design of antiviral and antibacterial drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary structure of mouse furin.
Figure 2: Overall three-dimensional structure of mouse furin.
Figure 3: Fold differences between subtilisin and the catalytic domain of furin.
Figure 4: Interactions between the inhibitor and the active site cleft.
Figure 5: A model of substrate interaction with furin.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Nakayama, K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem. J. 327, 625–635 (1997).

    Article  CAS  Google Scholar 

  2. Steiner, D.F. The proprotein convertases. Curr. Opin. Chem. Biol. 3, 31–39 (1998).

    Article  Google Scholar 

  3. Seidah, N.G. & Chretien, M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 848, 45–62 (1999).

    Article  CAS  Google Scholar 

  4. Thomas, G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Biol. 3, 753–766 (2002).

    Article  CAS  Google Scholar 

  5. Rockwell, N.C., Krysan, D.J., Komiyama, T. & Fuller, R.S. Precursor processing by Kex2/furin proteases. Chem. Rev. 102, 4525–4548 (2002).

    Article  CAS  Google Scholar 

  6. Fuller, R.S., Brake, A.J. & Thorner, J. Intracellular targeting and structural conservation of a prohormone-processing endoprotease. Science 246, 482–486 (1989).

    Article  CAS  Google Scholar 

  7. Siezen, R.J. & Leunissen, J.A. Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci. 6, 501–523 (1997).

    Article  CAS  Google Scholar 

  8. Anderson, E.D., VanSlyke, J.K., Thulin, C.D., Jean, F. & Thomas, G. Activation of the furin endoprotease is a multiple-step process: requirements for acidification and internal propeptide cleavage. EMBO J. 16, 1508–1518 (1997).

    Article  CAS  Google Scholar 

  9. Anderson, E.D. et al. The ordered and compartment-specific autoproteolytic removal of the furin intramolecular chaperone is required for enzyme activation. J. Biol. Chem. 277, 12879–12890 (2002).

    Article  CAS  Google Scholar 

  10. Roebroek, A.J. et al. Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin. Development 125, 4863–4876 (1998).

    CAS  PubMed  Google Scholar 

  11. Molloy, S.S., Bresnahan, P.A., Leppla, S.H., Klimpel, KR & Thomas, G. Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J. Biol. Chem. 267, 16396–16402 (1992).

    CAS  PubMed  Google Scholar 

  12. Volchkov, V.E., Feldmann, H., Volchkova, V.A. & Klenk, H.D. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc. Natl. Acad. Sci. USA 95, 5762–5767 (1998).

    Article  CAS  Google Scholar 

  13. Hallenberger, S. et al. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature. 360, 358–361 (1992).

    Article  CAS  Google Scholar 

  14. Tangrea, M.A., Bryan, P.N., Sari, N. & Orban, J. Solution structure of the pro-hormone convertase 1 pro-domain from Mus musculus. J. Mol. Biol. 320, 801–812 (2002).

    Article  CAS  Google Scholar 

  15. Siezen, R.J., Creemers, J.W. & Van de Ven, W.J. Homology modelling of the catalytic domain of human furin. A model for the eukaryotic subtilisin-like proprotein convertases. Eur. J. Biochem. 222, 255–266 (1994).

    Article  CAS  Google Scholar 

  16. Ueda, K. et al. Mutational analysis of predicted interactions between the catalytic and P domains of prohormone convertase 3 (PC3/PC1). Proc. Natl. Acad. Sci. USA 100, 5622–5627 (2003).

    Article  CAS  Google Scholar 

  17. Bode, W., Papamokos, E. & Musil, D. The high-resolution X-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin c, an elastase inhibitor from the leech Hirudo medicinalis. Eur. J. Biochem. 166, 673–692 (1987).

    Article  CAS  Google Scholar 

  18. Lusson, J. et al. The integrity of the RRGDL sequence of the proprotein convertase PC1 is critical for its zymogen and C-terminal processing and for its cellular trafficking. Biochem. J. 326, 737–744 (1997).

    Article  CAS  Google Scholar 

  19. Zhou, A., Martin, S., Lipkind, G., LaMendola, J. & Steiner, D.F. Regulatory roles of the P domain of the subtilisin-like prohormone convertases. J. Biol. Chem. 273, 11107–11114 (1998).

    Article  CAS  Google Scholar 

  20. Bhattacharjya, S. et al. pH-induced conformational transitions of a molten-globule-like state of the inhibitory prodomain of furin: implications for zymogen activation. Protein Sci. 10, 934–942 (2001).

    Article  CAS  Google Scholar 

  21. Gallagher, T., Gilliland, G., Wang, L. & Bryan, P. The prosegment-subtilisin BPN' complex: crystal structure of a specific 'foldase'. Structure 3, 907–914 (1995).

    Article  CAS  Google Scholar 

  22. Jean, F., Boudreault, A., Basak, A., Seidah, N.G. & Lazure, C. Fluorescent peptidyl substrates as an aid in studying the substrate specificity of human prohormone convertase PC1 and human furin and designing a potent irreversible inhibitor. J. Biol. Chem. 270, 19225–19231 (1995).

    Article  CAS  Google Scholar 

  23. Fugère, M. et al. Inhibitory potency and specificity of subtilase-like pro-protein convertase (SPC) prodomains. J. Biol. Chem. 277, 7648–7656 (2002).

    Article  Google Scholar 

  24. Cameron, A., Appel, J., Houghten, R.A. & Lindberg, I. Polyarginines are potent furin inhibitors. J. Biol. Chem. 275, 36741–36749 (2000).

    Article  CAS  Google Scholar 

  25. Basak, A., Zhong, M., Munzer, J.S., Chretien, M. & Seidah, N.G. Implication of the proprotein convertases furin, PC5 and PC7 in the cleavage of surface glycoproteins of Hong Kong, Ebola and respiratory syncytial viruses: a comparative analysis with fluorogenic peptides. Biochem. J. 353, 537–545 (2001).

    Article  CAS  Google Scholar 

  26. Sarac, M.S., Cameron, A. & Lindberg, I. The furin inhibitor hexa-d-arginine blocks the activation of Pseudomonas aeruginosa exotoxin A in vivo. Infect. Immun. 70, 7136–7139 (2002).

    Article  CAS  Google Scholar 

  27. Kiefersauer, R. et al. A novel free-mounting system for protein crystals: transformation and improvement of diffraction quality by accurately controlled humidity changes. Appl. Crystallogr. 33, 1223–1230 (2000).

    Article  CAS  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillations mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  29. Collaborative Computational Project, Number 4. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  30. Turk, D. Weiterentwicklung eines Programms f_r Molekuelgraphik ]und Elektrondichte-Manipulation und seine Anwendung auf verschiedene Protein-Strukturaufklärungen. Dissertation, Technische Universität München (1992).

  31. Brünger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. A 54, 905–921 (1998).

    Article  Google Scholar 

  32. Nicholls, A., Bharadwaj, R. & Honig, B. Grasp: graphical representation and analysis of surface properties. Biophys. J. 64, A166 (1993).

    Google Scholar 

  33. Esnouf, R.M. Further additions to MolScript version 1.4, including reading and contouring of electron density maps. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  34. Kraulis, P.J. MolScript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  35. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  36. Barton, G.J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The technical help of H. Bartunik and R. Mentele and the financial support of a National Institutes of Health grant and a Research Scientist Development Award (I.L.), a DFG grant (M.E.T.), the SFB596, the Fonds der Chemischen Industrie and EU-projects (W.B.) are gratefully acknowledged. The authors wish to thank D. Steiner for establishing the contact for this collaboration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wolfram Bode or Manuel E Than.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henrich, S., Cameron, A., Bourenkov, G. et al. The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat Struct Mol Biol 10, 520–526 (2003). https://doi.org/10.1038/nsb941

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb941

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing