Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for negative regulation of hypoxia-inducible factor-1α by CITED2

Abstract

Expression of hypoxia-responsive genes is mediated by the heterodimeric transcription factor hypoxia-inducible factor-1 (HIF-1) in complex with the p300/CREB-binding protein (p300/CBP) transcriptional coactivator. The protein CITED2, which binds p300/CBP, is thought to be a negative regulator of HIF-1 transactivation. We show that the CITED2 transactivation domain (TAD) disrupts a complex of the HIF-1α C-terminal TAD (C-TAD) and the cysteine-histidine–rich 1 (CH1) domain of p300/CBP by binding CH1 with high affinity. The high-resolution solution structure of the CITED2 TAD–p300 CH1 complex shows that the CITED2 TAD, like the HIF-1α C-TAD, folds on a helical, Zn2+-containing CH1 scaffold. The CITED2 TAD binds a different, more extensive surface of CH1 than does the HIF-1α C-TAD. However, a conserved 'LPXL' sequence motif in CITED2 and HIF-1α interacts with an overlapping binding site on CH1. Mutation of the LPEL sequence in full-length CITED2 abolishes p300 binding in vivo. These findings reveal that CITED2 regulates HIF-1 by competing for a hot spot on the p300 CH1 domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homologous sequences of CITED2 TAD and p300 CH1 domain.
Figure 2: Binding of CITED2 to p300 and stability of the CITED2–p300 complex.
Figure 3: Structure of the CITED2–p300 complex and comparison to the HIF-1α–p300 complex.
Figure 4: Contact maps of the CITED2–p300 complex compared to the HIF-1α–p300 complex.
Figure 5: Intermolecular contacts between CITED2 and p300.
Figure 6: Transcription factor binding surfaces on CH1.
Figure 7: Binding of an LPEL mutant of CITED2 in vivo.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Semenza, G.L. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell Dev. Biol. 15, 551–578 (1999).

    Article  CAS  Google Scholar 

  2. Iyer, N.V. et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 12, 149–162 (1998).

    Article  CAS  Google Scholar 

  3. Semenza, G.L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol. Med. 7, 345–350 (2001).

    Article  CAS  Google Scholar 

  4. Kung, A.L., Wang, S., Klco, J.M., Kaelin, W.G. & Livingston, D.M. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat. Med. 6, 1335–1340 (2000).

    Article  CAS  Google Scholar 

  5. Wang, G.L., Jiang, B.H., Rue, E.A. & Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 92, 5510–5514 (1995).

    Article  CAS  Google Scholar 

  6. Huang, L.E., Arany, Z., Livingston, D.M. & Bunn, H.F. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its α subunit. J. Biol. Chem. 271, 32253–32259 (1996).

    Article  CAS  Google Scholar 

  7. Jiang, B.H., Rue, E., Wang, G.L., Roe, R. & Semenza, G.L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271, 17771–17778 (1996).

    Article  CAS  Google Scholar 

  8. Semenza, G.L. Physiology meets biophysics: visualizing the interaction of hypoxia-inducible factor 1α with p300 and CBP. Proc. Natl. Acad. Sci. USA 99, 11570–11572 (2002).

    Article  CAS  Google Scholar 

  9. Bruick, R.K. & McKnight, S.L. Transcription. Oxygen sensing gets a second wind. Science 295, 807–808 (2002).

    Article  CAS  Google Scholar 

  10. Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J. & Whitelaw, M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295, 858–861 (2002).

    Article  CAS  Google Scholar 

  11. Mahon, P.C., Hirota, K. & Semenza, G.L. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15, 2675–2686 (2001).

    Article  CAS  Google Scholar 

  12. Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466–1471 (2002).

    Article  CAS  Google Scholar 

  13. Hewitson, K.S. et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. 277, 26351–26355 (2002).

    Article  CAS  Google Scholar 

  14. McNeill, L.A. et al. Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the β-carbon of asparagine-803. Biochem. J. 367, 571–575 (2002).

    Article  CAS  Google Scholar 

  15. Freedman, S.J. et al. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1α. Proc. Natl. Acad. Sci. USA 99, 5367–5372 (2002).

    Article  CAS  Google Scholar 

  16. Dames, S.A., Martinez-Yamout, M., De Guzman, R.N., Dyson, H.J. & Wright, P.E. Structural basis for Hif-1 α/CBP recognition in the cellular hypoxic response. Proc. Natl. Acad. Sci. USA 99, 5271–5276 (2002).

    Article  CAS  Google Scholar 

  17. Lee, C., Kim, S.J., Jeong, D.G., Lee, S.M. & Ryu, S.E. Structure of human FIH-1 reveals a unique active site pocket and interaction sites for HIF-1 and VHL. J. Biol. Chem. (2002).

  18. Min, J.H. et al. Structure of an HIF-1α-pVHL complex: hydroxyproline recognition in signaling. Science 296, 1886–1889 (2002).

    Article  CAS  Google Scholar 

  19. Hon, W.C. et al. Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature 417, 975–978 (2002).

    Article  CAS  Google Scholar 

  20. Dann, C.E. 3rd, Bruick, R.K. & Deisenhofer, J. Structure of factor-inhibiting hypoxia-inducible factor 1: an asparaginyl hydroxylase involved in the hypoxic response pathway. Proc. Natl. Acad. Sci. USA 99, 15351–15356 (2002).

    Article  CAS  Google Scholar 

  21. Elkins, J.M. et al. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1α. J. Biol. Chem. 278, 1802–1806 (2003).

    Article  CAS  Google Scholar 

  22. Braganca, J. et al. Human CREB-binding protein/p300-interacting transactivator with ED-rich tail (CITED) 4, a new member of the CITED family, functions as a co-activator for transcription factor AP-2. J. Biol. Chem. 277, 8559–8565 (2002).

    Article  CAS  Google Scholar 

  23. Leung, M.K., Jones, T., Michels, C.L., Livingston, D.M. & Bhattacharya, S. Molecular cloning and chromosomal localization of the human CITED2 gene encoding p35srj/Mrg1. Genomics 61, 307–313 (1999).

    Article  CAS  Google Scholar 

  24. Shioda, T., Fenner, M.H. & Isselbacher, K.J. msg1, a novel melanocyte-specific gene, encodes a nuclear protein and is associated with pigmentation. Proc. Natl Acad. Sci. USA 93, 12298–12303 (1996).

    Article  CAS  Google Scholar 

  25. Sun, H.B., Zhu, Y.X., Yin, T., Sledge, G. & Yang, Y.C. MRG1, the product of a melanocyte-specific gene-related gene, is a cytokine-inducible transcription factor with transformation activity. Proc. Natl. Acad. Sci. USA 95, 13555–13560 (1998).

    Article  CAS  Google Scholar 

  26. Yahata, T. et al. The MSG1 non-DNA-binding transactivator binds to the p300/CBP coactivators, enhancing their functional link to the Smad transcription factors. J. Biol. Chem. 275, 8825–8834 (2000).

    Article  CAS  Google Scholar 

  27. Yahata, T. et al. Selective coactivation of estrogen-dependent transcription by CITED1 CBP/p300-binding protein. Genes Dev. 15, 2598–2612 (2001).

    Article  CAS  Google Scholar 

  28. Bhattacharya, S. et al. Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes. Dev. 13, 64–75 (1999).

    Article  CAS  Google Scholar 

  29. Yin, Z. et al. The essential role of Cited2, a negative regulator for HIF-1α, in heart development and neurulation. Proc. Natl. Acad. Sci. USA 99, 10488–10493 (2002).

    Article  CAS  Google Scholar 

  30. Bamforth, S.D. et al. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nat. Genet. 29, 469–474 (2001).

    Article  CAS  Google Scholar 

  31. Vo, N. & Goodman, R.H. CREB-binding protein and p300 in transcriptional regulation. J. Biol. Chem. 276, 13505–13508 (2001).

    Article  CAS  Google Scholar 

  32. Lo Conte, L., Chothia, C. & Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177–2198 (1999).

    Article  CAS  Google Scholar 

  33. De Guzman, R.N., Liu, H.Y., Martinez-Yamout, M., Dyson, H.J. & Wright, P.E. Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP. J. Mol. Biol. 303, 243–253 (2000).

    Article  CAS  Google Scholar 

  34. Gu, J., Milligan, J. & Huang, L.E. Molecular mechanism of hypoxia-inducible factor 1α-p300 interaction. A leucine-rich interface regulated by a single cysteine. J. Biol. Chem. 276, 3550–3554 (2001).

    Article  CAS  Google Scholar 

  35. Daniels, D.L., Eklof Spink, K. & Weis, W.I. β-catenin: molecular plasticity and drug design. Trends Biochem. Sci. 26, 672–678 (2001).

    Article  CAS  Google Scholar 

  36. Dyson, H.J. & Wright, P.E. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12, 54–60 (2002).

    Article  CAS  Google Scholar 

  37. Neri, D., Szyperski, T., Otting, G., Senn, H. & Wuthrich, K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28, 7510–7516 (1989).

    Article  CAS  Google Scholar 

  38. Matsuo, H. et al. Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat. Struct. Biol. 4, 717–724 (1997).

    Article  CAS  Google Scholar 

  39. Guntert, P., Dotsch, V., Wider, G. & Wuthrich, K. Processing of multi-dimensional NMR data with the new software PROSA. J. Biomol. NMR 2, 619–629 (1992).

    Article  Google Scholar 

  40. Bartels, C., Xia, T.-H., Billeter, M., Guntert, P. & Wuthrich, K. The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 5, 1–10 (1995).

    Article  Google Scholar 

  41. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  42. Guntert, P., Mumenthaler, C. & Wuthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  CAS  Google Scholar 

  43. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms. Circumventing problems associated with folding. FEBS Lett. 239, 129–136 (1988).

    Article  CAS  Google Scholar 

  44. Brunger, A.T. A System for X-ray Crystallography and NMR, Version 3.1 (Yale Univ. Press, New Haven, Connecticut, 1992).

    Google Scholar 

  45. Laskowski, R.A., Rullmann, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  46. Koradi, R., Billeter, M. & Wuthrich, K. MolMol: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55, 29–32 (1996).

    Article  CAS  Google Scholar 

  47. Hoffman, R.C., Horvath, S.J. & Klevit, R.E. Structures of DNA-binding mutant zinc finger domains: implications for DNA binding. Protein Sci. 2, 951–965 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Dana-Farber Cancer Institute–Novartis Drug Discovery Program to M.J.E. and A.L.K., and a US National Science Foundation grant to G.W. M.J.E. is a recipient of a scholar award from the Leukemia and Lymphoma Society. S.J.F. is a recipient of a National Institutes of Health K08 award from the National Heart, Lung, and Blood Institute, and an ASH Scholar Award from the American Society of Hematology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J Eck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freedman, S., Sun, ZY., Kung, A. et al. Structural basis for negative regulation of hypoxia-inducible factor-1α by CITED2. Nat Struct Mol Biol 10, 504–512 (2003). https://doi.org/10.1038/nsb936

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb936

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing