Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Redox-sensitive extracellular gates formed by auxiliary β subunits of calcium-activated potassium channels

Abstract

An important step to understanding ion channels is identifying the structural components that act as the gates to ion movement. Here we describe a new channel gating mechanism, produced by the β3 auxiliary subunits of Ca2+-activated, large-conductance BK-type K+ channels when expressed with their pore-forming α subunits. BK β subunits have a cysteine-rich extracellular segment connecting two transmembrane segments, with small cytosolic N and C termini. The extracellular segments of the β3 subunits form gates to block ion permeation, providing a mechanism by which current can be rapidly diminished upon cellular repolarization. Furthermore, this gating mechanism is abolished by reduction of extracellular disulfide linkages, suggesting that endogenous mechanisms may regulate this gating behavior. The results indicate that auxiliary β subunits of BK channels reside sufficiently close to the ion permeation pathway defined by the α subunits to influence or block access of small molecules to the permeation pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Auxiliary β subunits have different effects on instantaneous current-voltage properties of BK currents.
Figure 2: The extracellular loop of the BK β3 auxiliary subunit produces outward rectification in BK currents.
Figure 3: Extracellular application of DTT abolishes rectification and alters sensitivity to CTX.
Figure 4: Outward rectification arises from a rapid voltage-dependent, DTT-sensitive block of single channels.
Figure 5: The extracellular blocking mechanism requires the contributions of more than one β3 subunit.
Figure 6: Diagrams showing various stoichiometric combinations of α + β3 subunits.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. MacKinnon, R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350, 232–235 (1991).

    Article  CAS  Google Scholar 

  2. Li, M., Unwin, N., Stauffer, K.A., Jan, Y.N. & Jan, L.Y. Images of purified Shaker potassium channels. Curr. Biol. 4, 110–115 (1994).

    Article  CAS  Google Scholar 

  3. Pfaffinger, P.J. & DeRubeis, D. Shaker K+ channel T1 domain self-tetramerizes to a stable structure. J. Biol. Chem. 270, 28595–28600 (1995).

    Article  CAS  Google Scholar 

  4. Adelman, J.P. et al. Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9, 209–216 (1992).

    Article  CAS  Google Scholar 

  5. Butler, A., Tsunoda, S., McCobb, D.P., Wei, A. & Salkoff, L. mSlo, a complex mouse gene encoding 'maxi' calcium-activated potassium channels. Science 261, 221–224 (1993).

    Article  CAS  Google Scholar 

  6. Knaus, H.G. et al. Primary sequence and immunological characterization of β-subunit of high conductance Ca2+-activated K+ channel from smooth muscle. J. Biol. Chem. 269, 17274–17278 (1994).

    CAS  PubMed  Google Scholar 

  7. Wallner, M., Meera, P. & Toro, L. Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane β-subunit homolog. Proc. Natl. Acad. Sci. USA 96, 4137–4142 (1999).

    Article  CAS  Google Scholar 

  8. Xia, X.M., Ding, J.P. & Lingle, C.J. Molecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. J. Neurosci. 19, 5255–5264 (1999).

    Article  CAS  Google Scholar 

  9. Xia, X.-M., Ding, J., Zeng, X.-H., Duan, K.-L. & Lingle, C. Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel β subunit. J. Neurosci. 20, 4890–4903 (2000).

    Article  CAS  Google Scholar 

  10. Uebele, V.N. et al. Cloning and functional expression of two families of β-subunits of the large conductance calcium-activated K+ channel. J. Biol. Chem. 275, 23211–23218 (2000).

    Article  CAS  Google Scholar 

  11. Brenner, R., Jegla, T.J., Wickenden, A., Liu, Y. & Aldrich, R.W. Cloning and functional characterization of novel large conductance calcium-activated potassium channel β subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275, 6453–6461 (2000).

    Article  CAS  Google Scholar 

  12. McManus, O.B. et al. Functional role of the β subunit of high conductance calcium-activated potassium channels. Neuron 14, 645–650 (1995).

    Article  CAS  Google Scholar 

  13. Jin, P., Weiger, T.M. & Levitan, I.B. Reciprocal modulation between the α and β4 subunits of hSlo calcium-dependent potassium channels. J. Biol. Chem. 277, 43724–43729 (2002).

    Article  CAS  Google Scholar 

  14. Meera, P., Wallner, M. & Toro, L. A neuronal β subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc. Natl. Acad. Sci. USA 97, 5562–5567 (2000).

    Article  CAS  Google Scholar 

  15. Hanner, M. et al. The β subunit of the high conductance calcium-activated potassium channel. Identification of residues involved in charybdotoxin binding. J. Biol. Chem. 273, 16289–16296 (1998).

    Article  CAS  Google Scholar 

  16. Knaus, H.G., Garcia-Calvo, M., Kaczorowski, G.J. & Garcia, M.L. Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J. Biol. Chem. 269, 3921–3924 (1994).

    CAS  PubMed  Google Scholar 

  17. Wang, Y.-W., Ding, J.P., Xia, X.-M. & Lingle, C.J. Consequences of the stoichiometry of Slo1 α and auxiliary β subunits on functional properties of BK-type Ca2+-activated K+ channels. J. Neurosci. 22, 1550–1561 (2002).

    Article  CAS  Google Scholar 

  18. Hanner, M. et al. The β subunit of the high-conductance calcium-activated potassium channel contributes to the high-affinity receptor for charybdotoxin. Proc. Natl. Acad. Sci. USA 94, 2853–2858 (1997).

    Article  CAS  Google Scholar 

  19. Meera, P., Wallner, M. & Toro, L. A neuronal β subunit (KCNMB4) makes the large conductance, voltage and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc. Natl. Acad. Sci. USA 97, 5562–5567 (2000).

    Article  CAS  Google Scholar 

  20. Zeng, X.-H., Xia, X.-M. & Lingle, C.J. Gating properties conferred on BK channels by the β3b auxiliary subunit in the absence of its N- and C-termini. J. Gen. Physiol. 117, 607–627 (2001).

    Article  CAS  Google Scholar 

  21. Cox, D.H., Cui, J. & Aldrich, R.W. Separation of gating properties from permeation and block in mSlo large conductance Ca-activated K+ channels. J. Gen. Physiol. 109, 633–646 (1997).

    Article  CAS  Google Scholar 

  22. Lopatin, A.N., Makhina, E.N. & Nichols, C.G. The mechanism of inward rectification of potassium channels: 'long-pore plugging' by cytoplasmic polyamines. J. Gen. Physiol. 106, 923–955 (1995).

    Article  CAS  Google Scholar 

  23. Shyng, S.L., Sha, Q., Ferrigni, T., Lopatin, A.N. & Nichols, C.G. Depletion of intracellular polyamines relieves inward rectification of potassium channels. Proc. Natl. Acad. Sci. USA 93, 12014–12019 (1996).

    Article  CAS  Google Scholar 

  24. Ding, J.P., Li, Z.W. & Lingle, C.J. Inactivating BK channels in rat chromaffin cells may arise from heteromultimeric assembly of distinct inactivation-competent and noninactivating subunits. Biophys. J. 74, 268–289 (1998).

    Article  CAS  Google Scholar 

  25. MacKinnon, R., Aldrich, R.W. & Lee, A.W. Functional stoichiometry of Shaker potassium channel inactivation. Science 262, 757–759 (1993).

    Article  CAS  Google Scholar 

  26. Yellen, G. The voltage-gated potassium channels and their relatives. Nature 419, 35–42 (2002).

    Article  CAS  Google Scholar 

  27. Bruening-Wright, A., Schumacher, M.A., Adelman, J.P. & Maylie, J. Localization of the activation gate for small conductance Ca2+-activated K+ channels. J. Neurosci. 22, 6499–6506 (2002).

    Article  CAS  Google Scholar 

  28. del Camino, D. & Yellen, G. Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel. Neuron 32, 649–656 (2001).

    Article  CAS  Google Scholar 

  29. Zhou, M., Morais-Cabral, J.H., Mann, S. & MacKinnon, R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411, 657–661 (2001).

    Article  CAS  Google Scholar 

  30. Hoshi, T., Zagotta, W.N. & Aldrich, R.W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation [see comments]. Science 250, 533–538 (1990).

    Article  CAS  Google Scholar 

  31. Rettig, J. et al. Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit. Nature 369, 289–294 (1994).

    Article  CAS  Google Scholar 

  32. Armstrong, C.E. & Roberts, W.M. Rapidly inactivating and non-inactivating calcium-activated potassium currents in frog saccular hair cells. J. Physiol. 536, 49–65 (2001).

    Article  CAS  Google Scholar 

  33. Weiger, T.M. et al. A novel nervous system β subunit that downregulates human large conductance calcium-dependent potassium channels. J. Neurosci. 20, 3563–3570 (2000).

    Article  CAS  Google Scholar 

  34. Horrigan, F. & Aldrich, R. Coupling between voltage-sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J. Gen. Physiol. 120, 267–305 (2002).

    Article  CAS  Google Scholar 

  35. Lingle, C.J. Setting the stage for molecular dissection of the regulatory components of BK channels. J. Gen. Physiol. 120, 261–265 (2002).

    Article  CAS  Google Scholar 

  36. Xia, X.M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503–507 (1998).

    Article  CAS  Google Scholar 

  37. Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  38. Zhang, X., Solaro, C. & Lingle, C. Allosteric regulation of BK channel gating by Ca2+ and Mg2+ through a non-selective, low affinity divalent cation site. J. Gen. Physiol. 118, 607–635 (2001).

    Article  CAS  Google Scholar 

  39. Solaro, C.R., Ding, J.P., Li, Z.W. & Lingle, C.J. The cytosolic inactivation domains of BKi channels in rat chromaffin cells do not behave like simple, open-channel blockers. Biophys. J. 73, 819–830 (1997).

    Article  CAS  Google Scholar 

  40. Wallner, M., Meera, P. & Toro, L. Determinant for β-subunit regulation in high-conductance voltage- activated and Ca2+-sensitive K+ channels: an additional transmembrane region at the N terminus. Proc. Natl. Acad. Sci. USA 93, 14922–14927 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Department of Anesthesiology, Washington University School of Medicine for material support. X.Z. was supported by an AHA-Missouri affiliate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J Lingle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, XH., Xia, XM. & Lingle, C. Redox-sensitive extracellular gates formed by auxiliary β subunits of calcium-activated potassium channels. Nat Struct Mol Biol 10, 448–454 (2003). https://doi.org/10.1038/nsb932

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb932

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing