Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase

A Corrigendum to this article was published on 01 July 2003

Abstract

Two crystal structures of yeast translation elongation factor 2 (eEF2) were determined: the apo form at 2.9 Å resolution and eEF2 in the presence of the translocation inhibitor sordarin at 2.1 Å resolution. The overall conformation of apo eEF2 is similar to that of its prokaryotic homolog elongation factor G (EF-G) in complex with GDP. Upon sordarin binding, the three tRNA-mimicking C-terminal domains undergo substantial conformational changes, while the three N-terminal domains containing the nucleotide-binding site form an almost rigid unit. The conformation of eEF2 in complex with sordarin is entirely different from known conformations observed in crystal structures of EF-G or from cryo-EM studies of EF-G–70S complexes. The domain rearrangements induced by sordarin binding and the highly ordered drug-binding site observed in the eEF2–sordarin structure provide a high-resolution structural basis for the mechanism of sordarin inhibition. The two structures also emphasize the dynamic nature of the ribosomal translocase.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structure determination and the eEF2 structures.
Figure 2: The conformational change between the two states.
Figure 3: The sordarin-binding site.
Figure 4: The nucleotide pocket.

Accession codes

Accessions

Protein Data Bank

References

  1. Semenkov, Y.P., Rodnina, M.V. & Wintermeyer, W. Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome. Nat. Struct. Biol. 7, 1027–1031 (2000).

    CAS  Article  PubMed  Google Scholar 

  2. Noller, H.F., Yusupov, M.M., Yusupova, G.Z., Baucom, A. & Cate, J.H. Translocation of tRNA during protein synthesis. FEBS Lett. 514, 11–16 (2002).

    CAS  Article  PubMed  Google Scholar 

  3. Ramakrishnan, V. Ribosome structure and the mechanism of translation. Cell 108, 557–572 (2002).

    CAS  Article  PubMed  Google Scholar 

  4. Czworkowski, J., Wang, J., Steitz, T.A. & Moore, P.B. The crystal structure of elongation factor G complexed with GDP, at 2.7 Å resolution. EMBO J. 13, 3661–3668 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Aevarsson, A. et al. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J. 13, 3669–3677 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270, 1464–1472 (1995).

    CAS  Article  PubMed  Google Scholar 

  7. Rodnina, M.V., Savelsbergh, A., Katunin, V.I. & Wintermeyer, W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 37–41 (1997).

    CAS  Article  PubMed  Google Scholar 

  8. Katunin, V.I., Savelsbergh, A., Rodnina, M.V. & Wintermeyer, W. Coupling of GTP hydrolysis by elongation factor G to translocation and factor recycling on the ribosome. Biochemistry 41, 12806–12812 (2002).

    CAS  Article  PubMed  Google Scholar 

  9. Czworkowski, J. & Moore, P.B. The conformational properties of elongation factor G and the mechanism of translocation. Biochemistry 36, 10327–10334 (1997).

    CAS  Article  PubMed  Google Scholar 

  10. Agrawal, R.K., Penczek, P., Grassucci, R.A. & Frank, J. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl. Acad. Sci. USA 95, 6134–6138 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Stark, H., Rodnina, M.V., Wieden, H.J., van Heel, M. & Wintermeyer, W. Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100, 301–309 (2000).

    CAS  Article  PubMed  Google Scholar 

  12. Gomez-Lorenzo, M.G. et al. Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 Å resolution. EMBO J. 19, 2710–2718 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Justice, M.C. et al. Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J. Biol. Chem. 273, 3148–3151 (1998).

    CAS  Article  PubMed  Google Scholar 

  14. Dominguez, J.M., Gomez-Lorenzo, M.G. & Martin, J.J. Sordarin inhibits fungal protein synthesis by blocking translocation differently to fusidic acid. J. Biol. Chem. 274, 22423–22427 (1999).

    CAS  Article  PubMed  Google Scholar 

  15. Laurberg, M. et al. Structure of a mutant EF-G reveals domain III and possibly the fusidic acid binding site. J. Mol. Biol. 303, 593–603 (2000).

    CAS  Article  PubMed  Google Scholar 

  16. Kjeldgaard, M., Nissen, P., Thirup, S. & Nyborg, J. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1, 35–50 (1993).

    CAS  Article  PubMed  Google Scholar 

  17. Andersen, G. et al. Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Bα. Mol. Cell 6, 1261–1266 (2000).

    CAS  Article  PubMed  Google Scholar 

  18. Peske, F., Matassova, N.B., Savelsbergh, A., Rodnina, M.V. & Wintermeyer, W. Conformationally restricted elongation factor G retains GTPase activity but is inactive in translocation on the ribosome. Mol. Cell 6, 501–505 (2000).

    CAS  Article  PubMed  Google Scholar 

  19. Shastry, M. et al. Species-specific inhibition of fungal protein synthesis by sordarin: identification of a sordarin-specificity region in eukaryotic elongation factor 2. Microbiology 147, 383–390 (2001).

    CAS  Article  PubMed  Google Scholar 

  20. Dominguez, J.M. & Martin, J.J. Identification of a putative sordarin binding site in Candida albicans elongation factor 2 by photoaffinity labeling. J. Biol. Chem. 276, 31402–31407 (2001).

    CAS  Article  PubMed  Google Scholar 

  21. Al-Karadaghi, S., Ævarsson, A., Garber, M., Zheltonosova, J. & Liljas, A. The structure of elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange. Structure 4, 555–565 (1996).

    CAS  Article  PubMed  Google Scholar 

  22. Andersen, G.R., Valente, L., Pedersen, L., Kinzy, T.G. & Nyborg, J. Crystal structures of nucleotide exchange intermediates in the eEF1A:eEF1Bα complex. Nat. Struct. Biol. 8, 531–534 (2001).

    CAS  Article  PubMed  Google Scholar 

  23. Roll-Mecak, A., Cao, C., Dever, T.E. & Burley, S.K. X-ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell 103, 781–792 (2000).

    CAS  Article  PubMed  Google Scholar 

  24. Polekhina, G. et al. Helix unwinding in the effector region of elongation factor EF-Tu:GDP. Structure 4, 1141–1151 (1996).

    CAS  Article  PubMed  Google Scholar 

  25. Nurten, R. & Bermek, E. Interactions of elongation factor 2 (EF-2) with guanine nucleotides and ribosomes. Binding of periodate-oxidized guanine nucleotides to EF-2. Eur. J. Biochem. 103, 551–555 (1980).

    CAS  Article  PubMed  Google Scholar 

  26. Agrawal, R.K., Heagle, A.B., Penczek, P., Grassucci, R.A. & Frank, J. EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nat. Struct. Biol. 6, 643–647 (1999).

    CAS  Article  PubMed  Google Scholar 

  27. Stark, H. et al. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat. Struct. Biol. 9, 849–854 (2002).

    CAS  PubMed  Google Scholar 

  28. Valle, M. et al. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J. 21, 3557–3567 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Klaholz, B.P. et al. Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421, 90–94 (2003).

    CAS  Article  PubMed  Google Scholar 

  30. Rawat, U.B. et al. A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421, 87–90 (2003).

    CAS  Article  PubMed  Google Scholar 

  31. Vestergaard, B. et al. Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. Mol. Cell 8, 1375–1382 (2001).

    CAS  Article  PubMed  Google Scholar 

  32. Jorgensen, R., Carr-Schmid, A., Ortiz, P.A., Kinzy, T.G. & Andersen, G.R. Purification and crystallization of the yeast elongation factor eEF2. Acta Crystallogr. D 58, 712–715 (2002).

    Article  PubMed  Google Scholar 

  33. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002).

    Article  PubMed  Google Scholar 

  34. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    CAS  Article  PubMed  Google Scholar 

  35. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Jones, T.A., Cowan, S., Zou, J.-Y. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  37. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  38. Laskowski, R., MacArthur, M.W., Mos, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    CAS  Article  Google Scholar 

  39. Hayward, S. & Berendsen, H.J. Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthase and T4 lysozyme. Proteins 30, 144–154 (1998).

    CAS  Article  PubMed  Google Scholar 

  40. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 29–32 (1996).

    Article  Google Scholar 

  41. DeLano, W.L. The PyMOL User's Manual (DeLano Scientific, San Carlos; 2002).

    Google Scholar 

  42. Sprang, S.R. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66, 639–678 (1997).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge access to the coordinates of eEF2-cryo (J. Frank) and the fitted coordinates of three states of EF-G (W. Wintermeyer). We also appreciate fruitful discussions with J. Nyborg. R.J. and G.R.A. were supported by Merck Research Laboratories, the Danish Science Research Council, Dansync and the EU. T.G.K. and P.A.O. were supported by the NIH. P.N., T.G.K. and G.R.A. were supported by the Human Frontiers Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregers Rom Andersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jørgensen, R., Ortiz, P., Carr-Schmid, A. et al. Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase. Nat Struct Mol Biol 10, 379–385 (2003). https://doi.org/10.1038/nsb923

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb923

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing